文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于无磁场点的磁性纳米粒子定位与驱动:可移动电磁驱动的可行性

Localization and Actuation for MNPs Based on Magnetic Field-Free Point: Feasibility of Movable Electromagnetic Actuations.

作者信息

Kim Chan, Kim Jayoung, Park Jong-Oh, Choi Eunpyo, Kim Chang-Sei

机构信息

School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.

Korea Institute of Medical Microrobotics, Gwangju 61011, Korea.

出版信息

Micromachines (Basel). 2020 Nov 21;11(11):1020. doi: 10.3390/mi11111020.


DOI:10.3390/mi11111020
PMID:33233414
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7700462/
Abstract

Targeted drug delivery (TDD) based on magnetic nanoparticles (MNPs) and external magnetic actuation is a promising drug delivery technology compared to conventional treatments usually utilized in cancer therapy. However, the implementation of a TDD system at a clinical site based on considerations for the actual size of the human body requires a simplified structure capable of both external actuation and localization. To address these requirements, we propose a novel approach to localize drug carriers containing MNPs by manipulating the field-free point (FFP) mechanism in the principal magnetic field. To this end, we devise a versatile electromagnetic actuation (EMA) system for FFP generation based on four coils affixed to a movable frame. By the Biot-Savart law, the FFP can be manipulated by appropriately controlling the gradient field strength at the target area using the EMA system. Further, weighted-norm solutions are utilized to correct the positions of FFP to improve the accuracy of FFP displacement in the region of interest (ROI). As MNPs, ferrofluid is used to experiment with 2D and 3D localizations in a blocked phantom placed in the designed ROI. The resultant root mean square error of the localizations is observed to be approximately 1.4 mm in the 2D case and 1.6 mm in the 3D case. Further, the proposed movable EMA is verified to be capable of simultaneously scanning multiple points as well as the actuation and imaging of MNPs. Based on the success of the experiments in this study, further research is intended to be conducted in scale-up system development to design precise TDD systems at clinical sites.

摘要

与癌症治疗中常用的传统疗法相比,基于磁性纳米颗粒(MNPs)和外部磁驱动的靶向给药(TDD)是一种很有前景的给药技术。然而,基于人体实际尺寸的考虑,在临床场所实施TDD系统需要一种既能进行外部驱动又能定位的简化结构。为了满足这些要求,我们提出了一种新方法,即通过在主磁场中操纵无场点(FFP)机制来定位含有MNPs的药物载体。为此,我们设计了一种通用的电磁驱动(EMA)系统,用于基于固定在可移动框架上的四个线圈生成FFP。根据毕奥 - 萨伐尔定律,通过使用EMA系统适当控制目标区域的梯度场强,可以操纵FFP。此外,利用加权范数解来校正FFP的位置,以提高感兴趣区域(ROI)中FFP位移的精度。作为MNPs,使用铁磁流体在放置在设计的ROI中的阻塞模型中进行二维和三维定位实验。观察到二维情况下定位的均方根误差约为1.4毫米,三维情况下为1.6毫米。此外,验证了所提出的可移动EMA能够同时扫描多个点以及对MNPs进行驱动和成像。基于本研究实验的成功,未来打算在扩大系统开发方面进行进一步研究,以设计临床场所的精确TDD系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/bb43fd9e0230/micromachines-11-01020-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/9a949820c6cc/micromachines-11-01020-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/268ea9378dc6/micromachines-11-01020-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/b205b53e1ecc/micromachines-11-01020-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/7dca171908f0/micromachines-11-01020-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/e9d825f7a072/micromachines-11-01020-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/87f344be9410/micromachines-11-01020-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/ef323d4a8f4f/micromachines-11-01020-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/901890c3b6b6/micromachines-11-01020-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/e73bdce70672/micromachines-11-01020-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/bb43fd9e0230/micromachines-11-01020-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/9a949820c6cc/micromachines-11-01020-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/268ea9378dc6/micromachines-11-01020-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/b205b53e1ecc/micromachines-11-01020-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/7dca171908f0/micromachines-11-01020-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/e9d825f7a072/micromachines-11-01020-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/87f344be9410/micromachines-11-01020-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/ef323d4a8f4f/micromachines-11-01020-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/901890c3b6b6/micromachines-11-01020-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/e73bdce70672/micromachines-11-01020-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a0/7700462/bb43fd9e0230/micromachines-11-01020-g010.jpg

相似文献

[1]
Localization and Actuation for MNPs Based on Magnetic Field-Free Point: Feasibility of Movable Electromagnetic Actuations.

Micromachines (Basel). 2020-11-21

[2]
Optimization of Field-Free Point Position, Gradient Field and Ferromagnetic Polymer Ratio for Enhanced Navigation of Magnetically Controlled Polymer-Based Microrobots in Blood Vessel.

Micromachines (Basel). 2021-4-13

[3]
Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus.

Biomed Microdevices. 2018-11-16

[4]
Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.

Sensors (Basel). 2017-9-7

[5]
Functionalized electromagnetic actuation method for aggregated nanoparticles steering.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

[6]
A Novel Magnetic Actuation Scheme to Disaggregate Nanoparticles and Enhance Passage across the Blood-Brain Barrier.

Nanomaterials (Basel). 2017-12-22

[7]
Magnetic particle image scanner based on asymmetric core-filled electromagnetic actuator.

Comput Biol Med. 2024-2

[8]
Design and Implementation of a Flexible Electromagnetic Actuator for Tunable Terahertz Metamaterials.

Micromachines (Basel). 2024-1-31

[9]
Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy.

Bioimpacts. 2015

[10]
Real-time microrobot posture recognition via biplane X-ray imaging system for external electromagnetic actuation.

Int J Comput Assist Radiol Surg. 2018-8-20

引用本文的文献

[1]
Promising biomedical applications using superparamagnetic nanoparticles.

Eur J Med Res. 2025-6-2

[2]
Computational modeling of superparamagnetic nanoparticle-based (affinity) diagnostics.

Front Bioeng Biotechnol. 2024-12-6

[3]
Control of Self-Winding Microrobot Using an Electromagnetic Drive System: Integration of Movable Electromagnetic Coil and Permanent Magnet.

Micromachines (Basel). 2024-3-25

[4]
A Review of Microrobot's System: Towards System Integration for Autonomous Actuation In Vivo.

Micromachines (Basel). 2021-10-15

[5]
Optimization of Field-Free Point Position, Gradient Field and Ferromagnetic Polymer Ratio for Enhanced Navigation of Magnetically Controlled Polymer-Based Microrobots in Blood Vessel.

Micromachines (Basel). 2021-4-13

[6]
New Possibilities for Testing the Service Life of Magnetic Contacts.

Micromachines (Basel). 2021-4-22

本文引用的文献

[1]
Robotic Localization Based on Planar Cable Robot and Hall Sensor Array Applied to Magnetic Capsule Endoscope.

Sensors (Basel). 2020-10-9

[2]
A Robotic Biopsy Endoscope with Magnetic 5-DOF Locomotion and a Retractable Biopsy Punch.

Micromachines (Basel). 2020-1-17

[3]
Magnetic Particle Imaging meets Computed Tomography: first simultaneous imaging.

Sci Rep. 2019-9-2

[4]
Monolayer grafting of aminosilane on magnetic nanoparticles: An efficient approach for targeted drug delivery system.

J Colloid Interface Sci. 2018-6-15

[5]
Functionalized electromagnetic actuation method for aggregated nanoparticles steering.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

[6]
Nanoparticles and targeted drug delivery in cancer therapy.

Immunol Lett. 2017-7-29

[7]
Steering of Magnetic Devices With a Magnetic Particle Imaging System.

IEEE Trans Biomed Eng. 2016-11

[8]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

[9]
Magnetic particle imaging with tailored iron oxide nanoparticle tracers.

IEEE Trans Med Imaging. 2015-5

[10]
Synthetic routes to magnetic nanoparticles for MPI.

Biomed Tech (Berl). 2013-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索