Kim Chan, Kim Jayoung, Park Jong-Oh, Choi Eunpyo, Kim Chang-Sei
School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.
Korea Institute of Medical Microrobotics, Gwangju 61011, Korea.
Micromachines (Basel). 2020 Nov 21;11(11):1020. doi: 10.3390/mi11111020.
Targeted drug delivery (TDD) based on magnetic nanoparticles (MNPs) and external magnetic actuation is a promising drug delivery technology compared to conventional treatments usually utilized in cancer therapy. However, the implementation of a TDD system at a clinical site based on considerations for the actual size of the human body requires a simplified structure capable of both external actuation and localization. To address these requirements, we propose a novel approach to localize drug carriers containing MNPs by manipulating the field-free point (FFP) mechanism in the principal magnetic field. To this end, we devise a versatile electromagnetic actuation (EMA) system for FFP generation based on four coils affixed to a movable frame. By the Biot-Savart law, the FFP can be manipulated by appropriately controlling the gradient field strength at the target area using the EMA system. Further, weighted-norm solutions are utilized to correct the positions of FFP to improve the accuracy of FFP displacement in the region of interest (ROI). As MNPs, ferrofluid is used to experiment with 2D and 3D localizations in a blocked phantom placed in the designed ROI. The resultant root mean square error of the localizations is observed to be approximately 1.4 mm in the 2D case and 1.6 mm in the 3D case. Further, the proposed movable EMA is verified to be capable of simultaneously scanning multiple points as well as the actuation and imaging of MNPs. Based on the success of the experiments in this study, further research is intended to be conducted in scale-up system development to design precise TDD systems at clinical sites.
与癌症治疗中常用的传统疗法相比,基于磁性纳米颗粒(MNPs)和外部磁驱动的靶向给药(TDD)是一种很有前景的给药技术。然而,基于人体实际尺寸的考虑,在临床场所实施TDD系统需要一种既能进行外部驱动又能定位的简化结构。为了满足这些要求,我们提出了一种新方法,即通过在主磁场中操纵无场点(FFP)机制来定位含有MNPs的药物载体。为此,我们设计了一种通用的电磁驱动(EMA)系统,用于基于固定在可移动框架上的四个线圈生成FFP。根据毕奥 - 萨伐尔定律,通过使用EMA系统适当控制目标区域的梯度场强,可以操纵FFP。此外,利用加权范数解来校正FFP的位置,以提高感兴趣区域(ROI)中FFP位移的精度。作为MNPs,使用铁磁流体在放置在设计的ROI中的阻塞模型中进行二维和三维定位实验。观察到二维情况下定位的均方根误差约为1.4毫米,三维情况下为1.6毫米。此外,验证了所提出的可移动EMA能够同时扫描多个点以及对MNPs进行驱动和成像。基于本研究实验的成功,未来打算在扩大系统开发方面进行进一步研究,以设计临床场所的精确TDD系统。
Micromachines (Basel). 2020-11-21
Annu Int Conf IEEE Eng Med Biol Soc. 2017-7
Nanomaterials (Basel). 2017-12-22
Comput Biol Med. 2024-2
Micromachines (Basel). 2024-1-31
Int J Comput Assist Radiol Surg. 2018-8-20
Eur J Med Res. 2025-6-2
Front Bioeng Biotechnol. 2024-12-6
Micromachines (Basel). 2021-10-15
Micromachines (Basel). 2021-4-22
Micromachines (Basel). 2020-1-17
J Colloid Interface Sci. 2018-6-15
Annu Int Conf IEEE Eng Med Biol Soc. 2017-7
Immunol Lett. 2017-7-29
IEEE Trans Biomed Eng. 2016-11
Int J Nanomedicine. 2015-4-22
IEEE Trans Med Imaging. 2015-5
Biomed Tech (Berl). 2013-12