Farinha Pedro, Coelho João M P, Reis Catarina Pinto, Gaspar Maria Manuela
Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Nanomaterials (Basel). 2021 Dec 17;11(12):3432. doi: 10.3390/nano11123432.
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
几十年来,人们一直在研究磁性纳米颗粒(MNPs)用于诊断目的。它们的高比表面积、分散性、与各种分子相互作用的能力以及超顺磁性特性是MNPs如此具有前景的核心所在。它们已被应用于医学的众多领域,尤其是磁共振成像(MRI)。基于其优异的超顺磁性特性和低毒性,氧化铁纳米颗粒(IONPs)是最被广泛接受的。然而,IONPs正面临着许多挑战,这使得它们难以进入市场。为了克服这些挑战,研究集中在开发具有更好安全性和增强磁性的MNPs。一个特别重要的策略包括用其他金属元素(如钴(Co)和锰(Mn))对MNPs(特别是IONPs)进行掺杂,以减少释放到体内的铁(Fe)含量,从而产生具有独特性质的多模态纳米颗粒。另一种方法包括使用除Fe之外的其他金属开发具有优异磁性或其他成像特性的MNPs。该领域的未来似乎是生产可作为多功能平台的MNPs,这些平台可以结合MRI的不同用途或不同的成像技术来设计更有效和完整的诊断测试。
Nanomaterials (Basel). 2021-12-17
Mater Sci Eng C Mater Biol Appl. 2021-1
Polymers (Basel). 2022-2-15
J Nanobiotechnology. 2022-6-27
Acc Chem Res. 2011-6-10
Sens Diagn. 2024-10-1
Adv Ther (Weinh). 2025-4
Biol Methods Protoc. 2025-6-5
Sovrem Tekhnologii Med. 2025
Nanomaterials (Basel). 2025-2-13
Open Life Sci. 2021-1-20
Korean J Radiol. 2021-3
Front Chem. 2020-9-25
Materials (Basel). 2020-10-18
ACS Nano. 2020-10-27