Suppr超能文献

混合体查找器:用于系统发育分析的DNA混合模型估计

MixtureFinder: Estimating DNA Mixture Models for Phylogenetic Analyses.

作者信息

Ren Huaiyan, Wong Thomas K F, Minh Bui Quang, Lanfear Robert

机构信息

School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia.

Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600, Australia.

出版信息

Mol Biol Evol. 2025 Jan 6;42(1). doi: 10.1093/molbev/msae264.

Abstract

In phylogenetic studies, both partitioned models and mixture models are used to account for heterogeneity in molecular evolution among the sites of DNA sequence alignments. Partitioned models require the user to specify the grouping of sites into subsets, and then assume that each subset of sites can be modeled by a single common process. Mixture models do not require users to prespecify subsets of sites, and instead calculate the likelihood of every site under every model, while co-estimating the model weights and parameters. While much research has gone into the optimization of partitioned models by merging user-specified subsets, there has been less attention paid to the optimization of mixture models for DNA sequence alignments. In this study, we first ask whether a key assumption of partitioned models-that each user-specified subset can be modeled by a single common process-is supported by the data. Having shown that this is not the case, we then design, implement, test, and apply an algorithm, MixtureFinder, to select the optimum number of classes for a mixture model of Q-matrices for the standard models of DNA sequence evolution. We show this algorithm performs well on simulated and empirical datasets and suggest that it may be useful for future empirical studies. MixtureFinder is available in IQ-TREE2, and a tutorial for using MixtureFinder can be found here: http://www.iqtree.org/doc/Complex-Models#mixture-models.

摘要

在系统发育研究中,划分模型和混合模型都用于解释DNA序列比对位点间分子进化的异质性。划分模型要求用户指定位点分组为子集,然后假设每个位点子集可以由一个共同过程建模。混合模型不要求用户预先指定位点子集,而是计算每个模型下每个位点的似然性,同时共同估计模型权重和参数。虽然已经有很多研究致力于通过合并用户指定的子集来优化划分模型,但对于DNA序列比对的混合模型优化关注较少。在本研究中,我们首先探讨划分模型的一个关键假设——每个用户指定的子集可以由一个共同过程建模——是否得到数据支持。在表明情况并非如此之后,我们接着设计、实现、测试并应用一种算法MixtureFinder,为DNA序列进化的标准模型选择Q矩阵混合模型的最优类别数。我们表明该算法在模拟和实证数据集上表现良好,并建议它可能对未来的实证研究有用。MixtureFinder可在IQ-TREE2中获取,使用MixtureFinder的教程可在此处找到:http://www.iqtree.org/doc/Complex-Models#mixture-models。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验