Suppr超能文献

通过持续葡萄糖监测和机器学习预测2型糖尿病的代谢亚表型

Prediction of metabolic subphenotypes of type 2 diabetes via continuous glucose monitoring and machine learning.

作者信息

Metwally Ahmed A, Perelman Dalia, Park Heyjun, Wu Yue, Jha Alokkumar, Sharp Seth, Celli Alessandra, Ayhan Ekrem, Abbasi Fahim, Gloyn Anna L, McLaughlin Tracey, Snyder Michael P

机构信息

Department of Genetics, Stanford University, Stanford, CA, USA.

Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt.

出版信息

Nat Biomed Eng. 2024 Dec 23. doi: 10.1038/s41551-024-01311-6.

Abstract

The classification of type 2 diabetes and prediabetes does not consider heterogeneity in the pathophysiology of glucose dysregulation. Here we show that prediabetes is characterized by metabolic heterogeneity, and that metabolic subphenotypes can be predicted by the shape of the glucose curve measured via a continuous glucose monitor (CGM) during standardized oral glucose-tolerance tests (OGTTs) performed in at-home settings. Gold-standard metabolic tests in 32 individuals with early glucose dysregulation revealed dominant or co-dominant subphenotypes (muscle or hepatic insulin-resistance phenotypes in 34% of the individuals, and β-cell-dysfunction or impaired-incretin-action phenotypes in 40% of them). Machine-learning models trained with glucose time series from OGTTs from the 32 individuals predicted the subphenotypes with areas under the curve (AUCs) of 95% for muscle insulin resistance, 89% for β-cell deficiency and 88% for impaired incretin action. With CGM-generated glucose curves obtained during at-home OGTTs, the models predicted the muscle-insulin-resistance and β-cell-deficiency subphenotypes of 29 individuals with AUCs of 88% and 84%, respectively. At-home identification of metabolic subphenotypes via a CGM may aid the risk stratification of individuals with early glucose dysregulation.

摘要

2型糖尿病和糖尿病前期的分类并未考虑葡萄糖调节异常病理生理学中的异质性。在此我们表明,糖尿病前期具有代谢异质性,并且在居家进行的标准化口服葡萄糖耐量试验(OGTT)期间,通过持续葡萄糖监测仪(CGM)测量的葡萄糖曲线形状能够预测代谢亚表型。对32例早期葡萄糖调节异常个体进行的金标准代谢测试揭示了显性或共显性亚表型(34%的个体为肌肉或肝脏胰岛素抵抗表型,40%的个体为β细胞功能障碍或肠促胰岛素作用受损表型)。利用这32例个体OGTT的葡萄糖时间序列训练的机器学习模型预测亚表型,肌肉胰岛素抵抗的曲线下面积(AUC)为95%,β细胞缺陷为89%,肠促胰岛素作用受损为88%。利用居家OGTT期间CGM生成的葡萄糖曲线,这些模型预测了29例个体的肌肉胰岛素抵抗和β细胞缺陷亚表型,AUC分别为88%和84%。通过CGM对代谢亚表型进行居家识别可能有助于对早期葡萄糖调节异常个体进行风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验