Mangala Gowri Veeramani, Panleam Theelada, Giri Jayant, Srithongkul Nattapong, Shanmugaraj Krishnamoorthy, Fatehmulla Amanullah, Thongmee Sirikanjana
Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute Gandhigram 624 302 Dindigul Tamilnadu India.
RSC Adv. 2024 Dec 23;14(54):40234-40246. doi: 10.1039/d4ra07744j. eCollection 2024 Dec 17.
The synthesis of polymer/oligomer-stabilized metal nanostructures (MNS) opens up a wide range of possibilities, from fundamental materials science to practical applications in domains such as medicine, catalysis, sensing, and energy. Because of the versatility of this synthetic approach, it is a dynamic and ever-changing field of study. These polymers/oligomers have precise control over the nucleation and growth kinetics, allowing the production of mono-disperse MNS with well-defined properties. The protective coating provided by polymers or oligomers increased the stability and colloidal dispersity of MNS in these oligomer-MNS composites. As a result, the current research reports the electrocatalytic reduction of nitrobenzene (NB) utilizing oligomeric aminomercaptotriazole (oligo AMTa) and oligo (AMTa-AuNS) modified glassy carbon (GC) electrodes developed a wet chemical technique. UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), high resolution mass spectroscopy (HR-MS), and high-resolution transmission electron microscopy (HR-TEM) approaches were used to confirm the development of oligomer and AuNS. After that, the GC electrode was directly linked to the oligo AMTa and oligo AMTa-AuNS by dipping them in the appropriate solutions. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cycle voltammetry (CV) were all employed to confirm the fabrication of oligo AMTa and oligo AMTa-AuNS. Eventually, the electrochemical reduction of NB occurred using the fabricated electrodes. The catalytic activity of oligo AMTa-AuNS has been observed to be more than that of the other modified electrode. As an outcome, the film was employed to determine the sensitivity level of NB, and a limit of detection (LOD) of 2.8 nM was found. The straight-forward method's practical utility was proven by measuring NB in lake sample water.
聚合物/低聚物稳定的金属纳米结构(MNS)的合成开辟了广泛的可能性,从基础材料科学到医学、催化、传感和能源等领域的实际应用。由于这种合成方法的多功能性,它是一个动态且不断变化的研究领域。这些聚合物/低聚物对成核和生长动力学具有精确控制,能够生产出具有明确特性的单分散MNS。聚合物或低聚物提供的保护涂层提高了这些低聚物-MNS复合材料中MNS的稳定性和胶体分散性。因此,当前的研究报告了利用低聚氨基巯基三唑(oligo AMTa)和低聚(AMTa-AuNS)修饰的玻碳(GC)电极,通过湿化学技术对硝基苯(NB)进行电催化还原。采用紫外-可见光谱、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、高分辨率质谱(HR-MS)和高分辨率透射电子显微镜(HR-TEM)方法来确认低聚物和AuNS的形成。之后,将GC电极通过浸入适当溶液中直接与oligo AMTa和oligo AMTa-AuNS连接。扫描电子显微镜(SEM)、电化学阻抗谱(EIS)和循环伏安法(CV)均用于确认oligo AMTa和oligo AMTa-AuNS的制备。最终,使用制备的电极进行NB的电化学还原。已观察到oligo AMTa-AuNS的催化活性高于其他修饰电极。结果,该薄膜被用于测定NB的灵敏度水平,发现检测限(LOD)为2.8 nM。通过测量湖泊水样中的NB证明了该直接方法的实际实用性。