Suppr超能文献

AneRBC数据集:一个用于使用红细胞图像进行计算机辅助贫血诊断的基准数据集。

AneRBC dataset: a benchmark dataset for computer-aided anemia diagnosis using RBC images.

作者信息

Shahzad Muhammad, Shirazi Syed Hamad, Yaqoob Muhammad, Khan Zakir, Rasheed Assad, Ahmed Sheikh Israr, Hayat Asad, Zhou Huiyu

机构信息

Department of Information Technology, Hazara University Mansehra, Dhodial, Mansehra, Khyber Pakhtunkhwa 21120, Pakistan.

Department of Computer Science, National University of Sciences and Technology (NUST), Kach Road, near Sheikh Mohammad Bin Zayed Al Nahyan Cardiac Centre, Quetta, Balochistan (NCB) 87300, Pakistan.

出版信息

Database (Oxford). 2024 Dec 25;2024. doi: 10.1093/database/baae120.

Abstract

Visual analysis of peripheral blood smear slides using medical image analysis is required to diagnose red blood cell (RBC) morphological deformities caused by anemia. The absence of a complete anaemic RBC dataset has hindered the training and testing of deep convolutional neural networks (CNNs) for computer-aided analysis of RBC morphology. We introduce a benchmark RBC image dataset named Anemic RBC (AneRBC) to overcome this problem. This dataset is divided into two versions: AneRBC-I and AneRBC-II. AneRBC-I contains 1000 microscopic images, including 500 healthy and 500 anaemic images with 1224 × 960 pixel resolution, along with manually generated ground truth of each image. Each image contains approximately 1550 RBC elements, including normocytes, microcytes, macrocytes, elliptocytes, and target cells, resulting in a total of approximately 1 550 000 RBC elements. The dataset also includes each image's complete blood count and morphology reports to validate the CNN model results with clinical data. Under the supervision of a team of expert pathologists, the annotation, labeling, and ground truth for each image were generated. Due to the high resolution, each image was divided into 12 subimages with ground truth and incorporated into AneRBC-II. AneRBC-II comprises a total of 12 000 images, comprising 6000 original and 6000 anaemic RBC images. Four state-of-the-art CNN models were applied for segmentation and classification to validate the proposed dataset. Database URL: https://data.mendeley.com/preview/hms3sjzt7f?a=4d0ba42a-cc6f-4777-adc4-2552e80db22b.

摘要

使用医学图像分析对外周血涂片进行视觉分析,对于诊断由贫血引起的红细胞(RBC)形态畸形至关重要。缺乏完整的贫血性红细胞数据集阻碍了用于红细胞形态计算机辅助分析的深度卷积神经网络(CNN)的训练和测试。为克服这一问题,我们引入了一个名为贫血性红细胞(AneRBC)的基准红细胞图像数据集。该数据集分为两个版本:AneRBC - I和AneRBC - II。AneRBC - I包含1000张显微图像,其中包括500张健康图像和500张贫血图像,分辨率为1224×960像素,同时还包含每个图像的手动生成的真实标注。每张图像包含约1550个红细胞元素,包括正常红细胞、小红细胞、大红细胞、椭圆形红细胞和靶形细胞,总共约1550000个红细胞元素。该数据集还包括每张图像的全血细胞计数和形态报告,以便用临床数据验证CNN模型的结果。在一组专家病理学家的监督下,生成了每个图像的注释、标记和真实标注。由于分辨率高,每个图像被分成12个子图像并带有真实标注,并入AneRBC - II。AneRBC - II总共包含12000张图像,包括6000张原始红细胞图像和6000张贫血红细胞图像。应用了四种先进的CNN模型进行分割和分类,以验证所提出的数据集。数据库网址:https://data.mendeley.com/preview/hms3sjzt7f?a=4d0ba42a - cc6f - 4777 - adc4 - 2552e80db22b 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f99/11918253/0e453ce9dea8/baae120f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验