Suppr超能文献

初级眼科护理实践中的人工智能虚拟助手

Artificial intelligence virtual assistants in primary eye care practice.

作者信息

Stuermer Leandro, Braga Sabrina, Martin Raul, Wolffsohn James S

机构信息

Department of Optometry, University of Contestado, Canoinhas, Brazil.

Optometry Research Group, School of Optometry, IOBA Eye Institute, University of Valladolid, Valladolid, Spain.

出版信息

Ophthalmic Physiol Opt. 2025 Mar;45(2):437-449. doi: 10.1111/opo.13435. Epub 2024 Dec 26.

Abstract

PURPOSE

To propose a novel artificial intelligence (AI)-based virtual assistant trained on tabular clinical data that can provide decision-making support in primary eye care practice and optometry education programmes.

METHOD

Anonymised clinical data from 1125 complete optometric examinations (2250 eyes; 63% women, 37% men) were used to train different machine learning algorithm models to predict eye examination classification (refractive, binocular vision dysfunction, ocular disorder or any combination of these three options). After modelling, adjustment, mining and preprocessing (one-hot encoding and SMOTE techniques), 75 input (preliminary data, history, oculomotor test and ocular examinations) and three output (refractive, binocular vision status and eye disease) features were defined. The data were split into training (80%) and test (20%) sets. Five machine learning algorithms were trained, and the best algorithms were subjected to fivefold cross-validation. Model performance was evaluated for accuracy, precision, sensitivity, F1 score and specificity.

RESULTS

The random forest algorithm was the best for classifying eye examination results with a performance >95.2% (based on 35 input features from preliminary data and history), to propose a subclassification of ocular disorders with a performance >98.1% (based on 65 features from preliminary data, history and ocular examinations) and to differentiate binocular vision dysfunctions with a performance >99.7% (based on 30 features from preliminary data and oculomotor tests). These models were integrated into a responsive web application, available in three languages, allowing intuitive access to the AI models via conventional clinical terms.

CONCLUSIONS

An AI-based virtual assistant that performed well in predicting patient classification, eye disorders or binocular vision dysfunction has been developed with potential use in primary eye care practice and education programmes.

摘要

目的

提出一种基于人工智能(AI)的虚拟助手,该助手基于表格临床数据进行训练,可为初级眼保健实践和验光教育项目提供决策支持。

方法

使用来自1125次完整验光检查(2250只眼;女性占63%,男性占37%)的匿名临床数据来训练不同的机器学习算法模型,以预测眼部检查分类(屈光、双眼视觉功能障碍、眼部疾病或这三种情况的任意组合)。建模、调整、挖掘和预处理(独热编码和SMOTE技术)后,定义了75个输入(初步数据、病史、动眼神经检查和眼部检查)和三个输出(屈光、双眼视觉状态和眼部疾病)特征。数据被分为训练集(80%)和测试集(20%)。训练了五种机器学习算法,并对最佳算法进行五折交叉验证。通过准确性、精确性、敏感性、F1分数和特异性评估模型性能。

结果

随机森林算法在对眼部检查结果进行分类方面表现最佳,性能>95.2%(基于初步数据和病史中的35个输入特征),在提出眼部疾病的子分类方面性能>98.1%(基于初步数据、病史和眼部检查中的65个特征),在区分双眼视觉功能障碍方面性能>99.7%(基于初步数据和动眼神经检查中的30个特征)。这些模型被集成到一个响应式网络应用程序中,该应用程序有三种语言版本,允许通过传统临床术语直观地访问人工智能模型。

结论

已开发出一种基于人工智能的虚拟助手,该助手在预测患者分类、眼部疾病或双眼视觉功能障碍方面表现良好,在初级眼保健实践和教育项目中具有潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c71/11823310/b021bf77ad5f/OPO-45-437-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验