Suppr超能文献

基于多期动态增强CT影像组学特征和多分类器分层融合模型预测肝细胞癌微血管侵犯

[Prediction of microvascular invasion in hepatocellular carcinoma based on multi-phase dynamic enhanced CT radiomics feature and multi-classifier hierarchical fusion model].

作者信息

Zhong W, Liang F, Yang R, Zhen X

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

School of Medicine, South China University of Technology, Guangzhou 510006, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2024 Feb 20;44(2):260-269. doi: 10.12122/j.issn.1673-4254.2024.02.08.

Abstract

OBJECTIVE

To predict microvascular invasion (MVI) in hepatocellular carcinoma (HCC) using a model based on multiphase dynamic-enhanced CT (DCE-CT) radiomics feature and hierarchical fusion of multiple classifiers.

METHODS

We retrospectively collected preoperative DCE-CT images from 111 patients with pathologically confirmed HCC in Guangzhou First People's Hospital between January, 2016 and April, 2020. The volume of interest was outlined in the early arterial phase, late arterial phase, portal venous phase and equilibrium phase, and radiomics features of these 4 phases were extracted. Seven classifiers based on different algorithms were trained using the filtered feature subsets to obtain multiple base classifiers under each phase. According to the hierarchical fusion strategy, a multi-criteria decision-making-based weight assignment algorithm was used for fusing each base classifier under the same phase with the model after extracting the phase information to obtain the prediction model. The proposed model was evaluated using a 5-fold cross-validation and assessed for area under the ROC curve (AUC), accuracy, sensitivity, and specificity. The prediction model was also compared with the fusion models using a single phase or multiple phases, models based on a single phase with a single classifier, models with different base classifier diversities, and 8 classifier models based on other ensemble methods.

RESULTS

The experimental results showed that the performance of the proposed model for predicting HCCMVI was optimal after incorporating the 4 phases and 7 classifiers, with AUC, accuracy, sensitivity, and specificity of 0.828, 0.766, 0.877, and 0.648, respectively. Comparative experiments showed that this prediction model outperformed the models based on a single phase with a single classifier and other ensemble models.

CONCLUSION

The proposed prediction model is effective for predicting MVI in HCC with superior performance to other models.

摘要

目的

使用基于多期动态增强CT(DCE-CT)影像组学特征和多分类器分层融合的模型预测肝细胞癌(HCC)中的微血管侵犯(MVI)。

方法

我们回顾性收集了2016年1月至2020年4月期间在广州市第一人民医院111例经病理证实的HCC患者的术前DCE-CT图像。在动脉早期、动脉晚期、门静脉期和平衡期勾勒出感兴趣区,并提取这4个期相的影像组学特征。使用经过滤的特征子集训练基于不同算法的7个分类器,以在每个期相下获得多个基础分类器。根据分层融合策略,在提取期相信息后,使用基于多准则决策的权重分配算法将同一期相下的每个基础分类器与模型进行融合,以获得预测模型。使用5折交叉验证对所提出的模型进行评估,并评估其ROC曲线下面积(AUC)、准确率、灵敏度和特异度。还将该预测模型与使用单相或多相的融合模型、基于单相单分类器的模型、具有不同基础分类器多样性的模型以及基于其他集成方法的8个分类器模型进行比较。

结果

实验结果表明,纳入4个期相和7个分类器后,所提出的预测HCC MVI模型性能最优,AUC、准确率、灵敏度和特异度分别为0.828、0.766、0.877和0.648。对比实验表明,该预测模型优于基于单相单分类器的模型和其他集成模型。

结论

所提出的预测模型对预测HCC中的MVI有效,性能优于其他模型。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验