Deser Clara, Kim Who M, Wills Robert C J, Simpson Isla R, Yeager Steve, Danabasoglu Gokhan, Rodgers Keith, Rosenbloom Nan
NSF National Center for Atmospheric Research, Boulder, CO USA.
Climate and Global Dynamics Laboratory, NCAR, 1850 Table Mesa Drive, Boulder, CO 80305 USA.
Clim Dyn. 2025;63(1):62. doi: 10.1007/s00382-024-07553-z. Epub 2024 Dec 24.
"Single Model initial-condition Large Ensembles" (SMILEs) conducted with Earth system models have transformed our ability to quantify internal climate variability and forced climate change at local and regional scales. An important consideration in their experimental design is the choice of initialization procedure as this influences the duration of initial-condition memory, with implications for interpreting the temporal evolution of both the ensemble-mean and ensemble-spread. Here we leverage the strategic design of the 100-member Community Earth System Model version 2 (CESM2) SMILE to investigate the dependence of ensemble spread on the method of initialization (micro- vs. macro- perturbations) and the effects of ocean initial-condition memory. We find that the evolution of ensemble spread in 10-year low-pass filtered data is relatively insensitive to the method of initialization beyond the second decade, with the notable exception of the tropical Indo-Pacific in the 4th decade, when macro-initialization significantly enhances ensemble spread, possibly as a result of a state-dependent response to major volcanic activity. Initial-condition memory associated with the chosen Atlantic Meridional Overturning Circulation (AMOC) states unfolds in two stages: First, in the North Atlantic lasting 4-5 decades, and subsequently, in the Indo-Pacific sector of the Southern Ocean appearing 35-years after initialization and lasting 3-4 decades. Known AMOC dynamics explain the first stage, but the role of AMOC and the mechanisms responsible for the delayed appearance of initial-condition memory in the Southern Ocean remain to be fully elucidated. Implications and recommendations for the design of future SMILEs are provided.
The online version contains supplementary material available at 10.1007/s00382-024-07553-z.
利用地球系统模型进行的“单模型初始条件大系综”(SMILEs)转变了我们在局部和区域尺度上量化内部气候变率和强迫气候变化的能力。其实验设计中的一个重要考虑因素是初始化程序的选择,因为这会影响初始条件记忆的持续时间,进而对解释系综均值和系综离散度的时间演变产生影响。在此,我们利用拥有100个成员的社区地球系统模型版本2(CESM2)SMILE的策略性设计,来研究系综离散度对初始化方法(微扰与宏扰)的依赖性以及海洋初始条件记忆的影响。我们发现,在经过10年低通滤波的数据中,系综离散度的演变在第二个十年之后对初始化方法相对不敏感,但在第四个十年的热带印度洋 - 太平洋地区是个显著例外,此时宏初始化会显著增强系综离散度,这可能是对重大火山活动的一种状态依赖响应的结果。与选定的大西洋经向翻转环流(AMOC)状态相关的初始条件记忆分两个阶段展开:首先,在北大西洋持续4 - 5十年,随后,在初始化35年后出现在南大洋的印度洋 - 太平洋区域,并持续3 - 4十年。已知的AMOC动力学解释了第一阶段,但AMOC的作用以及导致南大洋初始条件记忆延迟出现的机制仍有待充分阐明。本文还提供了对未来SMILEs设计的启示和建议。
在线版本包含可在10.1007/s00382 - 024 - 07553 - z获取的补充材料。