Suppr超能文献

一种基于多类公共空间模式的脑电图情感识别集成深度学习方法。

An Ensemble Deep Learning Approach for EEG-Based Emotion Recognition Using Multi-Class CSP.

作者信息

Yousefipour Behzad, Rajabpour Vahid, Abdoljabbari Hamidreza, Sheykhivand Sobhan, Danishvar Sebelan

机构信息

Department of Electrical Engineering, Sharif University of Technology, Tehran 51666-16471, Iran.

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666-16471, Iran.

出版信息

Biomimetics (Basel). 2024 Dec 14;9(12):761. doi: 10.3390/biomimetics9120761.

Abstract

In recent years, significant advancements have been made in the field of brain-computer interfaces (BCIs), particularly in the area of emotion recognition using EEG signals. The majority of earlier research in this field has missed the spatial-temporal characteristics of EEG signals, which are critical for accurate emotion recognition. In this study, a novel approach is presented for classifying emotions into three categories, positive, negative, and neutral, using a custom-collected dataset. The dataset used in this study was specifically collected for this purpose from 16 participants, comprising EEG recordings corresponding to the three emotional states induced by musical stimuli. A multi-class Common Spatial Pattern (MCCSP) technique was employed for the processing stage of the EEG signals. These processed signals were then fed into an ensemble model comprising three autoencoders with Convolutional Neural Network (CNN) layers. A classification accuracy of 99.44 ± 0.39% for the three emotional classes was achieved by the proposed method. This performance surpasses previous studies, demonstrating the effectiveness of the approach. The high accuracy indicates that the method could be a promising candidate for future BCI applications, providing a reliable means of emotion detection.

摘要

近年来,脑机接口(BCI)领域取得了重大进展,特别是在利用脑电图(EEG)信号进行情绪识别方面。该领域早期的大多数研究都忽略了EEG信号的时空特征,而这些特征对于准确的情绪识别至关重要。在本研究中,提出了一种新颖的方法,使用自定义收集的数据集将情绪分为积极、消极和中性三类。本研究中使用的数据集是专门为此目的从16名参与者那里收集的,包括与音乐刺激诱发的三种情绪状态相对应的EEG记录。在EEG信号的处理阶段采用了多类共同空间模式(MCCSP)技术。然后将这些处理后的信号输入到一个由三个带有卷积神经网络(CNN)层的自动编码器组成的集成模型中。所提出的方法在三种情绪类别上实现了99.44±0.39%的分类准确率。这一性能超过了先前的研究,证明了该方法的有效性。高精度表明该方法可能是未来BCI应用的一个有前途的候选方法,为情绪检测提供了一种可靠的手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e7/11673992/12912154140f/biomimetics-09-00761-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验