Castro-Martínez José A, Vargas Eva, Díaz-Beltrán Leticia, Esteban Francisco J
Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
Clinical Research Unit, Department of Medical Oncology, University Hospital of Jaén, 23007 Jaén, Spain.
Curr Issues Mol Biol. 2024 Nov 29;46(12):13583-13606. doi: 10.3390/cimb46120812.
Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset. Unlike conventional approaches, CASh is highly effective at detecting subtle but meaningful molecular patterns that are often missed. These findings highlight the potential of CASh to enhance the precision of transcriptomic analysis, providing a deeper understanding of the molecular mechanisms underlying these disorders and establishing a solid basis to improve diagnostic techniques and developing more targeted therapeutic interventions.
自闭症谱系障碍(ASD)、精神分裂症(SCH)、双相情感障碍(BD)和重度抑郁症(MDD)等神经疾病影响着全球数百万人,但其分子机制仍知之甚少。本研究描述了夏普利值比较分析(CASh)在与这些复杂疾病相关的九个数据集的转录组数据中的应用,证明了其在识别差异表达基因(DEG)方面的有效性。CASh将博弈论与自助重采样相结合,通过在完整数据集的更广泛背景下评估每个基因的贡献,为传统统计方法提供了一种强大的替代方法。与传统方法不同,CASh在检测常常被遗漏的细微但有意义的分子模式方面非常有效。这些发现凸显了CASh提高转录组分析精度的潜力,有助于更深入地了解这些疾病的分子机制,并为改进诊断技术和开发更具针对性的治疗干预措施奠定坚实基础。