Suppr超能文献

基于 ZnPC:PC70BM 的染料敏化太阳能电池的数值优化与性能评估。

Numerical optimization and performance evaluation of ZnPC:PC70BM based dye-sensitized solar cell.

机构信息

Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, 54590, Pakistan.

School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

出版信息

Sci Rep. 2023 Jun 27;13(1):10431. doi: 10.1038/s41598-023-37486-2.

Abstract

The increase in global energy consumption and the related ecological problems have generated a constant demand for alternative energy sources superior to traditional ones. This is why unlimited photon-energy harnessing is important. A notable focus to address this concern is on advancing and producing cost-effective low-loss solar cells. For efficient light energy capture and conversion, we fabricated a ZnPC:PC70BM-based dye-sensitized solar cell (DSSC) and estimated its performance using a solar cell capacitance simulator (SCAPS-1D). We evaluated the output parameters of the ZnPC:PC70BM-based DSSC with different photoactive layer thicknesses, series and shunt resistances, and back-metal work function. Our analyses show that moderate thickness, minimum series resistance, high shunt resistance, and high metal-work function are favorable for better device performance due to low recombination losses, electrical losses, and better transport of charge carriers. In addition, in-depth research for clarifying the impact of factors, such as thickness variation, defect density, and doping density of charge transport layers, has been conducted. The best efficiency value found was 10.30% after tweaking the parameters. It also provides a realistic strategy for efficiently utilizing DSSC cells by altering features that are highly dependent on DSSC performance and output.

摘要

全球能源消耗的增加和相关的生态问题产生了对优于传统能源的替代能源的持续需求。这就是为什么无限光子能量利用很重要。解决这一问题的一个显著焦点是推进和生产具有成本效益的低损耗太阳能电池。为了有效地捕获和转换光能,我们制造了一种基于 ZnPC:PC70BM 的染料敏化太阳能电池(DSSC),并使用太阳能电池电容模拟器(SCAPS-1D)来评估其性能。我们评估了具有不同光活性层厚度、串联和并联电阻以及背金属功函数的 ZnPC:PC70BM 基 DSSC 的输出参数。我们的分析表明,适度的厚度、最小的串联电阻、高的并联电阻和高的金属功函数有利于更好的器件性能,因为这可以降低复合损失、电损耗,并更好地传输载流子。此外,我们还深入研究了电荷传输层的厚度变化、缺陷密度和掺杂密度等因素的影响。经过调整参数,我们发现最佳效率值为 10.30%。这也为通过改变高度依赖于 DSSC 性能和输出的特性来有效利用 DSSC 电池提供了一种现实的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验