Suppr超能文献

TD-STrans:基于稀疏变压器的三域稀疏视图CT重建

TD-STrans: Tri-domain sparse-view CT reconstruction based on sparse transformer.

作者信息

Li Yu, Sun Xueqin, Wang Sukai, Guo Lina, Qin Yingwei, Pan Jinxiao, Chen Ping

机构信息

Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China.

The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China; Department of computer science and technology, North University of China, Taiyuan 030051, China.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108575. doi: 10.1016/j.cmpb.2024.108575. Epub 2024 Dec 25.

Abstract

BACKGROUND AND OBJECTIVE

Sparse-view computed tomography (CT) speeds up scanning and reduces radiation exposure in medical diagnosis. However, when the projection views are severely under-sampled, deep learning-based reconstruction methods often suffer from over-smoothing of the reconstructed images due to the lack of high-frequency information. To address this issue, we introduce frequency domain information into the popular projection-image domain reconstruction, proposing a Tri-Domain sparse-view CT reconstruction model based on Sparse Transformer (TD-STrans).

METHODS

TD-STrans integrates three essential modules: the projection recovery module completes the sparse-view projection, the Fourier domain filling module mitigates artifacts and over-smoothing by filling in missing high-frequency details; the image refinement module further enhances and preserves image details. Additionally, a multi-domain joint loss function is designed to simultaneously enhance the reconstruction quality in the projection domain, image domain, and frequency domain, thereby further improving the preservation of image details.

RESULTS

The results of simulation experiments on the lymph node dataset and real experiments on the walnut dataset consistently demonstrate the effectiveness of TD-STrans in artifact removal, suppression of over-smoothing, and preservation of structural fidelity.

CONCLUSION

The reconstruction results of TD-STrans indicate that sparse transformer across multiple domains can alleviate over-smoothing and detail loss caused by reduced views, offering a novel solution for ultra-sparse-view CT imaging.

摘要

背景与目的

稀疏视图计算机断层扫描(CT)在医学诊断中加快了扫描速度并减少了辐射暴露。然而,当投影视图严重欠采样时,基于深度学习的重建方法由于缺乏高频信息,重建图像往往会出现过度平滑的问题。为了解决这个问题,我们将频域信息引入到流行的投影图像域重建中,提出了一种基于稀疏变换器的三域稀疏视图CT重建模型(TD-STrans)。

方法

TD-STrans集成了三个关键模块:投影恢复模块完成稀疏视图投影,傅里叶域填充模块通过填充缺失的高频细节来减轻伪影和过度平滑;图像细化模块进一步增强并保留图像细节。此外,设计了一个多域联合损失函数,以同时提高投影域、图像域和频域的重建质量,从而进一步改善图像细节的保留。

结果

在淋巴结数据集上的模拟实验结果和在核桃数据集上的实际实验结果一致证明了TD-STrans在去除伪影、抑制过度平滑和保持结构保真度方面的有效性。

结论

TD-STrans的重建结果表明,跨多个域的稀疏变换器可以减轻因视图减少而导致的过度平滑和细节损失,为超稀疏视图CT成像提供了一种新的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验