Suppr超能文献

基于废水的流行病学:推导一种SARS-CoV-2数据验证方法以评估数据质量并改善趋势识别。

Wastewater-based epidemiology: deriving a SARS-CoV-2 data validation method to assess data quality and to improve trend recognition.

作者信息

Saravia Cristina J, Pütz Peter, Wurzbacher Christian, Uchaikina Anna, Drewes Jörg E, Braun Ulrike, Bannick Claus Gerhard, Obermaier Nathan

机构信息

Wastewater Technology Research, Wastewater Disposal, German Environment Agency, Berlin, Germany.

Infectious Disease Epidemiology, Surveillance, Robert-Koch-Institute, Berlin, Germany.

出版信息

Front Public Health. 2024 Dec 12;12:1497100. doi: 10.3389/fpubh.2024.1497100. eCollection 2024.

Abstract

INTRODUCTION

Accurate and consistent data play a critical role in enabling health officials to make informed decisions regarding emerging trends in SARS-CoV-2 infections. Alongside traditional indicators such as the 7-day-incidence rate, wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 concentration changes. However, the wastewater compositions and wastewater systems are rather complex. Multiple effects such as precipitation events or industrial discharges might affect the quantification of SARS-CoV-2 concentrations. Hence, analysing data from more than 150 wastewater treatment plants (WWTP) in Germany necessitates an automated and reliable method to evaluate data validity, identify potential extreme events, and, if possible, improve overall data quality.

METHODS

We developed a method that first categorises the data quality of WWTPs and corresponding laboratories based on the number of outliers in the reproduction rate as well as the number of implausible inflection points within the SARS-CoV-2 time series. Subsequently, we scrutinised statistical outliers in several standard quality control parameters (QCP) that are routinely collected during the analysis process such as the flow rate, the electrical conductivity, or surrogate viruses like the pepper mild mottle virus. Furthermore, we investigated outliers in the ratio of the analysed gene segments that might indicate laboratory errors. To evaluate the success of our method, we measure the degree of accordance between identified QCP outliers and outliers in the SARS-CoV-2 concentration curves.

RESULTS AND DISCUSSION

Our analysis reveals that the flow and gene segment ratios are typically best at identifying outliers in the SARS-CoV-2 concentration curve albeit variations across WWTPs and laboratories. The exclusion of datapoints based on QCP plausibility checks predominantly improves data quality. Our derived data quality categories are in good accordance with visual assessments.

CONCLUSION

Good data quality is crucial for trend recognition, both on the WWTP level and when aggregating data from several WWTPs to regional or national trends. Our model can help to improve data quality in the context of health-related monitoring and can be optimised for each individual WWTP to account for the large diversity among WWTPs.

摘要

引言

准确且一致的数据对于卫生官员就严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的新趋势做出明智决策起着关键作用。除了7天发病率等传统指标外,基于废水的流行病学可以提供有关SARS-CoV-2浓度变化的宝贵见解。然而,废水成分和废水系统相当复杂。诸如降水事件或工业排放等多种因素可能会影响SARS-CoV-2浓度的量化。因此,分析来自德国150多个污水处理厂(WWTP)的数据需要一种自动化且可靠的方法来评估数据有效性、识别潜在的极端事件,并在可能的情况下提高整体数据质量。

方法

我们开发了一种方法,该方法首先根据繁殖率中的异常值数量以及SARS-CoV-2时间序列内不合理的拐点数量对污水处理厂和相应实验室的数据质量进行分类。随后,我们仔细检查了在分析过程中常规收集的几个标准质量控制参数(QCP)中的统计异常值,如流速、电导率或诸如辣椒轻斑驳病毒等替代病毒。此外,我们研究了分析的基因片段比例中的异常值,这些异常值可能表明实验室误差。为了评估我们方法的成功程度,我们测量了识别出的QCP异常值与SARS-CoV-2浓度曲线中的异常值之间的一致程度。

结果与讨论

我们的分析表明,尽管污水处理厂和实验室之间存在差异,但流速和基因片段比例通常最能识别SARS-CoV-2浓度曲线中的异常值。基于QCP合理性检查排除数据点主要提高了数据质量。我们得出的数据质量类别与视觉评估高度一致。

结论

良好的数据质量对于污水处理厂层面的趋势识别以及将多个污水处理厂的数据汇总为区域或国家趋势时都至关重要。我们的模型有助于在健康相关监测的背景下提高数据质量,并且可以针对每个污水处理厂进行优化,以考虑污水处理厂之间的巨大差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1048/11674844/9cde58e121e9/fpubh-12-1497100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验