Suppr超能文献

利用肽-MHC-I呈递模型HLApollo设计改进的癌症免疫治疗靶点。

Towards designing improved cancer immunotherapy targets with a peptide-MHC-I presentation model, HLApollo.

作者信息

Thrift William John, Lounsbury Nicolas W, Broadwell Quade, Heidersbach Amy, Freund Emily, Abdolazimi Yassan, Phung Qui T, Chen Jieming, Capietto Aude-Hélène, Tong Ann-Jay, Rose Christopher M, Blanchette Craig, Lill Jennie R, Haley Benjamin, Delamarre Lélia, Bourgon Richard, Liu Kai, Jhunjhunwala Suchit

机构信息

Early Clinical Development Artificial Intelligence, Genentech, South San Francisco, CA, USA.

Oncology Bioinformatics, Genentech, South San Francisco, CA, USA.

出版信息

Nat Commun. 2024 Dec 30;15(1):10752. doi: 10.1038/s41467-024-54887-7.

Abstract

Based on the success of cancer immunotherapy, personalized cancer vaccines have emerged as a leading oncology treatment. Antigen presentation on MHC class I (MHC-I) is crucial for the adaptive immune response to cancer cells, necessitating highly predictive computational methods to model this phenomenon. Here, we introduce HLApollo, a transformer-based model for peptide-MHC-I (pMHC-I) presentation prediction, leveraging the language of peptides, MHC, and source proteins. HLApollo provides end-to-end treatment of MHC-I sequences and deconvolution of multi-allelic data, using a negative-set switching strategy to mitigate misassigned negatives in unlabelled ligandome data. HLApollo shows a 12.65% increase in average precision (AP) on ligandome data and a 4.1% AP increase on immunogenicity test data compared to next-best models. Incorporating protein features from protein language models yields further gains and reduces the need for gene expression measurements. Guided by clinical use, we demonstrate pan-allelic generalization which effectively captures rare alleles in underrepresented ancestries.

摘要

基于癌症免疫疗法的成功,个性化癌症疫苗已成为一种领先的肿瘤治疗方法。MHC I类(MHC-I)上的抗原呈递对于针对癌细胞的适应性免疫反应至关重要,因此需要高度预测性的计算方法来模拟这一现象。在此,我们介绍了HLApollo,这是一种基于Transformer的肽-MHC-I(pMHC-I)呈递预测模型,利用了肽、MHC和源蛋白的语言。HLApollo提供了对MHC-I序列的端到端处理以及多等位基因数据的反卷积,采用负集切换策略来减轻未标记配体组数据中错误分配的阴性。与次优模型相比,HLApollo在配体组数据上的平均精度(AP)提高了12.65%,在免疫原性测试数据上的AP提高了4.1%。纳入来自蛋白质语言模型的蛋白质特征可带来进一步的提升,并减少对基因表达测量的需求。在临床应用的指导下,我们展示了泛等位基因通用性,其有效地捕获了代表性不足的祖先中的罕见等位基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef1c/11686168/4db599b1d3a7/41467_2024_54887_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验