Suppr超能文献

基于无人机图像的豆科牧草-禾本科牧草混播草地豆科牧草含量估算:基于无人机覆盖范围与田间生物量的比较方法

Legume content estimation from UAV image in grass-legume meadows: comparison methods based on the UAV coverage vs. field biomass.

作者信息

Kawamura Kensuke, Tanaka Tsuneki, Yasuda Taisuke, Okoshi Shoji, Hanada Masaaki, Doi Kazuya, Saigusa Toshiya, Yagi Takanori, Sudo Kenji, Okumura Kenji, Lim Jihyun

机构信息

Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido, Japan.

Dairy Research Center, Hokkaido Research Organization (HRO), Nakashibetsu, Hokkaido, Japan.

出版信息

Sci Rep. 2024 Dec 30;14(1):31705. doi: 10.1038/s41598-024-82055-w.

Abstract

Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier. The SLIC-RF classification achieved a high accuracy level for four different ground cover types (grasses, legumes, weeds, and background) in seven distinct meadows with an overall accuracy of 91.4% and an F score of 91.5%. By applying SLIC-RF to eliminate plots with low classification accuracy, we demonstrate the necessity of achieving a minimum classification accuracy of 0.82 for precise LC estimation. A non-linear relationship was revealed between the LC and LC influenced by surface sward height (SSH, height of plant canopy). The results indicate a higher accuracy of the LC estimation when SSH levels were lower, particularly when recommending SSH levels below 40 cm for optimal LC estimation. This highlights the effectiveness of UAV-based remote sensing for assessing early growth or grazing in pastures with low SSH.

摘要

豆科植物含量(LC)在禾本科-豆科植物混合草中对于评估草地的牧草质量和优化肥料施用很重要。本研究聚焦于基于日本北海道七个草地干物质评估,从无人机(UAV)图像和地面调查获得的LC测量值的差异。我们提出一种基于无人机的LC估计和制图方法,该方法使用基于简单线性迭代聚类(SLIC)算法的土地覆盖图和随机森林(RF)分类器。SLIC-RF分类在七个不同草地的四种不同地面覆盖类型(禾本科植物、豆科植物、杂草和背景)上达到了较高的准确率,总体准确率为91.4%,F分数为91.5%。通过应用SLIC-RF来消除分类准确率低的地块,我们证明了为精确估计LC,达到最低分类准确率0.82的必要性。揭示了受地表草层高度(SSH,植物冠层高度)影响的LC与LC之间的非线性关系。结果表明,当SSH水平较低时,LC估计的准确率更高,特别是当推荐SSH水平低于40厘米以实现最佳LC估计时。这突出了基于无人机的遥感在评估低SSH牧场早期生长或放牧方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf58/11685594/89222ed47a09/41598_2024_82055_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验