Suppr超能文献

一种基于机器学习的临床预测工具,用于识别有用药错误高风险的患者。

A machine learning-based clinical predictive tool to identify patients at high risk of medication errors.

作者信息

Abdo Ammar, Gallay Lyse, Vallecillo Thibault, Clarenne Justine, Quillet Pauline, Vuiblet Vincent, Merieux Rudy

机构信息

Institut d'Intelligence Artificielle en Santé, CHU de Reims, Université de Reims Champagne- Ardenne, Reims, F-51100, France.

Department of Pharmacy, CHU de Reims, Reims, F-51100, France.

出版信息

Sci Rep. 2024 Dec 30;14(1):32022. doi: 10.1038/s41598-024-83631-w.

Abstract

A medication error is an inadvertent failure in the drug therapy process that can cause serious harm to patients by increasing morbidity and mortality and are associated with significant economic costs to the healthcare system. Medication reconciliation is the most cost-effective intervention and can result in a 66% reduction in medication errors. To improve patient safety, we developed a machine learning-based tool that prioritizes patients at risk of medication errors upon admission to the hospital to ensure that they undergo medication reconciliation by clinical pharmacists. The data were collected from the electronic health records of patients admitted to Reims University Hospital who underwent medication reconciliation between 2017 and 2023. The data from 7200 patients were used to train four machine learning-based models based on 52 variables in the development dataset. These models were used to prioritize admitted patients according to their likelihood of being exposed to a medication error. Our models, particularly the voting classifier model, demonstrated good performance (a recall of 0.75, precision of 0.65, F1 score of 0.70, AUROC of 0.74 and AUCPR of 0.75). In a retrospective evaluation simulating real-life use, the voting classifier model successfully identified 45% of the total patients selected who were found to have at least one unintended discrepancy compared to 21% when using the existing tool. The positive experimental results of this tool showed a superior improvement of 113% over the existing tool by targeting patients at risk of medication errors upon admission to Reims University Hospital.

摘要

用药错误是药物治疗过程中发生的意外失误,可能通过增加发病率和死亡率对患者造成严重伤害,并给医疗系统带来巨大经济成本。用药核对是最具成本效益的干预措施,可使用药错误减少66%。为提高患者安全,我们开发了一种基于机器学习的工具,该工具在患者入院时对有用药错误风险的患者进行优先级排序,以确保他们接受临床药师的用药核对。数据收集自兰斯大学医院2017年至2023年期间入院并接受用药核对的患者的电子健康记录。来自7200名患者的数据用于在开发数据集中基于52个变量训练四个基于机器学习的模型。这些模型用于根据患者发生用药错误的可能性对入院患者进行优先级排序。我们的模型,特别是投票分类器模型,表现出良好的性能(召回率为0.75,精确率为0.65,F1分数为0.70,曲线下面积为0.74,精确率-召回率曲线下面积为0.75)。在模拟实际使用的回顾性评估中,投票分类器模型成功识别出所选患者总数中45%的患者被发现至少有一处意外差异,而使用现有工具时这一比例为21%。该工具的积极实验结果表明,通过针对兰斯大学医院入院时有用药错误风险的患者,比现有工具提高了113%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e913/11685956/f4c9b6b6ce04/41598_2024_83631_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验