Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA.
Bioinformatics. 2022 Jul 11;38(14):3629-3637. doi: 10.1093/bioinformatics/btac381.
Whole slide tissue images contain detailed data on the sub-cellular structure of cancer. Quantitative analyses of this data can lead to novel biomarkers for better cancer diagnosis and prognosis and can improve our understanding of cancer mechanisms. Such analyses are challenging to execute because of the sizes and complexity of whole slide image data and relatively limited volume of training data for machine learning methods.
We propose and experimentally evaluate a multi-resolution deep learning method for breast cancer survival analysis. The proposed method integrates image data at multiple resolutions and tumor, lymphocyte and nuclear segmentation results from deep learning models. Our results show that this approach can significantly improve the deep learning model performance compared to using only the original image data. The proposed approach achieves a c-index value of 0.706 compared to a c-index value of 0.551 from an approach that uses only color image data at the highest image resolution. Furthermore, when clinical features (sex, age and cancer stage) are combined with image data, the proposed approach achieves a c-index of 0.773.
全幻灯片组织图像包含有关癌症亚细胞结构的详细数据。对这些数据进行定量分析可以为更好的癌症诊断和预后提供新的生物标志物,并有助于加深我们对癌症机制的理解。由于全幻灯片图像数据的大小和复杂性以及机器学习方法相对有限的训练数据量,此类分析具有挑战性。
我们提出并实验评估了一种用于乳腺癌生存分析的多分辨率深度学习方法。所提出的方法集成了多个分辨率的图像数据以及来自深度学习模型的肿瘤、淋巴细胞和核分割结果。我们的结果表明,与仅使用原始图像数据相比,该方法可以显著提高深度学习模型的性能。与仅使用最高图像分辨率的彩色图像数据的方法相比,所提出的方法的 c 指数值为 0.706,而该方法的 c 指数值为 0.551。此外,当将临床特征(性别、年龄和癌症分期)与图像数据结合使用时,所提出的方法的 c 指数达到 0.773。