Suppr超能文献

深度学习在乳腺癌全切片图像数据中的生存分析。

Deep learning for survival analysis in breast cancer with whole slide image data.

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.

Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Bioinformatics. 2022 Jul 11;38(14):3629-3637. doi: 10.1093/bioinformatics/btac381.

Abstract

MOTIVATION

Whole slide tissue images contain detailed data on the sub-cellular structure of cancer. Quantitative analyses of this data can lead to novel biomarkers for better cancer diagnosis and prognosis and can improve our understanding of cancer mechanisms. Such analyses are challenging to execute because of the sizes and complexity of whole slide image data and relatively limited volume of training data for machine learning methods.

RESULTS

We propose and experimentally evaluate a multi-resolution deep learning method for breast cancer survival analysis. The proposed method integrates image data at multiple resolutions and tumor, lymphocyte and nuclear segmentation results from deep learning models. Our results show that this approach can significantly improve the deep learning model performance compared to using only the original image data. The proposed approach achieves a c-index value of 0.706 compared to a c-index value of 0.551 from an approach that uses only color image data at the highest image resolution. Furthermore, when clinical features (sex, age and cancer stage) are combined with image data, the proposed approach achieves a c-index of 0.773.

AVAILABILITY AND IMPLEMENTATION

https://github.com/SBU-BMI/deep_survival_analysis.

摘要

动机

全幻灯片组织图像包含有关癌症亚细胞结构的详细数据。对这些数据进行定量分析可以为更好的癌症诊断和预后提供新的生物标志物,并有助于加深我们对癌症机制的理解。由于全幻灯片图像数据的大小和复杂性以及机器学习方法相对有限的训练数据量,此类分析具有挑战性。

结果

我们提出并实验评估了一种用于乳腺癌生存分析的多分辨率深度学习方法。所提出的方法集成了多个分辨率的图像数据以及来自深度学习模型的肿瘤、淋巴细胞和核分割结果。我们的结果表明,与仅使用原始图像数据相比,该方法可以显著提高深度学习模型的性能。与仅使用最高图像分辨率的彩色图像数据的方法相比,所提出的方法的 c 指数值为 0.706,而该方法的 c 指数值为 0.551。此外,当将临床特征(性别、年龄和癌症分期)与图像数据结合使用时,所提出的方法的 c 指数达到 0.773。

可用性和实现

https://github.com/SBU-BMI/deep_survival_analysis。

相似文献

引用本文的文献

6
Topology-Guided Multi-Class Cell Context Generation for Digital Pathology.用于数字病理学的拓扑引导多类细胞上下文生成
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:3323-3333. doi: 10.1109/cvpr52729.2023.00324. Epub 2023 Aug 22.

本文引用的文献

1
Robust Histopathology Image Analysis: to Label or to Synthesize?强大的组织病理学图像分析:标记还是合成?
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8533-8542. doi: 10.1109/CVPR.2019.00873. Epub 2020 Jan 9.
5
Deep learning in digital pathology image analysis: a survey.深度学习在数字病理学图像分析中的应用:综述。
Front Med. 2020 Aug;14(4):470-487. doi: 10.1007/s11684-020-0782-9. Epub 2020 Jul 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验