Suppr超能文献

用于下肢感觉神经假肢的神经接口设计的计算模型。

A computational model to design neural interfaces for lower-limb sensory neuroprostheses.

机构信息

Center for medical Image Analysis & Navigation, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.

Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH, Zürich, Switzerland.

出版信息

J Neuroeng Rehabil. 2020 Feb 19;17(1):24. doi: 10.1186/s12984-020-00657-7.

Abstract

BACKGROUND

Leg amputees suffer the lack of sensory feedback from a prosthesis, which is connected to their low confidence during walking, falls and low mobility. Electrical peripheral nerve stimulation (ePNS) of upper-limb amputee's residual nerves has shown the ability to restore the sensations from the missing limb via intraneural (TIME) and epineural (FINE) neural interfaces. Physiologically plausible stimulation protocols targeting lower limb sciatic nerve hold promise to induce sensory feedback restoration that should facilitate close-to-natural sensorimotor integration and therefore walking corrections. The sciatic nerve, innervating the foot and lower leg, has very different dimensions in respect to upper-limb nerves. Therefore, there is a need to develop a computational model of its behavior in response to the ePNS.

METHODS

We employed a hybrid FEM-NEURON model framework for the development of anatomically correct sciatic nerve model. Based on histological images of two distinct sciatic nerve cross-sections, we reconstructed accurate FEM models for testing neural interfaces. Two different electrode types (based on TIME and FINE) with multiple active sites configurations were tested and evaluated for efficiency (selective recruitment of fascicles). We also investigated different policies of stimulation (monopolar and bipolar), as well as the optimal number of implants. Additionally, we optimized the existing simulation framework significantly reducing the computational load.

RESULTS

The main findings achieved through our modelling study include electrode manufacturing and surgical placement indications, together with beneficial stimulation policy of use. It results that TIME electrodes with 20 active sites are optimal for lower limb and the same number has been obtained for FINE electrodes. To interface the huge sciatic nerve, model indicates that 3 TIMEs is the optimal number of surgically implanted electrodes. Through the bipolar policy of stimulation, all studied configurations were gaining in the efficiency. Also, an indication for the optimized computation is given, which decreased the computation time by 80%.

CONCLUSIONS

This computational model suggests the optimal interfaces to use in human subjects with lower limb amputation, their surgical placement and beneficial bipolar policy of stimulation. It will potentially enable the clinical translation of the sensory neuroprosthetics towards the lower limb applications.

摘要

背景

腿部截肢者由于假肢缺乏感觉反馈,导致他们在行走、跌倒和移动能力方面信心不足。上肢截肢者残肢的外周神经电刺激(ePNS)已经显示出通过神经内(TIME)和神经外(FINE)神经接口从缺失肢体恢复感觉的能力。针对坐骨神经的生理上合理的刺激方案有望诱导感觉反馈恢复,从而促进接近自然的感觉运动整合,进而进行行走矫正。坐骨神经支配足部和小腿,其尺寸与上肢神经有很大不同。因此,需要开发一种针对 ePNS 的行为计算模型。

方法

我们采用混合 FEM-NEURON 模型框架来开发解剖学上正确的坐骨神经模型。基于两个不同坐骨神经横截面的组织学图像,我们为测试神经接口重建了准确的 FEM 模型。测试和评估了两种不同的电极类型(基于 TIME 和 FINE)和多个活动部位配置的效率(束选择性募集)。我们还研究了不同的刺激策略(单极和双极)以及最佳植入物数量。此外,我们对现有的模拟框架进行了显著优化,大大降低了计算负荷。

结果

通过我们的建模研究,主要发现包括电极制造和手术放置的指示,以及有益的使用刺激策略。结果表明,对于下肢,具有 20 个活动部位的 TIME 电极是最佳的,而 FINE 电极则具有相同的数量。为了与巨大的坐骨神经接口,模型表明 3 个 TIME 是最佳的手术植入电极数量。通过刺激的双极策略,所有研究的配置都提高了效率。此外,还给出了优化计算的指示,计算时间减少了 80%。

结论

该计算模型为下肢截肢的人类受试者建议使用最佳接口、手术放置和有益的双极刺激策略。它将有可能促进感觉神经假肢的临床转化,使其应用于下肢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b69/7029520/7ccd175cfeb2/12984_2020_657_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验