Suppr超能文献

用于评估根尖片上非手术根管治疗结果的深度学习分割模型的开发与评估:一项回顾性研究。

Development and evaluation of a deep learning segmentation model for assessing non-surgical endodontic treatment outcomes on periapical radiographs: A retrospective study.

作者信息

Dennis Dennis, Suebnukarn Siriwan, Vicharueang Sothana, Limprasert Wasit

机构信息

Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia.

Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.

出版信息

PLoS One. 2024 Dec 31;19(12):e0310925. doi: 10.1371/journal.pone.0310925. eCollection 2024.

Abstract

This study aimed to evaluate the performance of a deep learning-based segmentation model for predicting outcomes of non-surgical endodontic treatment. Preoperative and 3-year postoperative periapical radiographic images of each tooth from routine root canal treatments performed by endodontists from 2015 to 2021 were obtained retrospectively from Thammasat University hospital. Preoperative radiographic images of 1200 teeth with 3-year follow-up results (440 healed, 400 healing, and 360 disease) were collected. Mask Region-based Convolutional Neural Network (Mask R-CNN) was used to pixel-wise segment the root from other structures in the image and trained to predict class label into healed, healing and disease. Three endodontists annotated 1080 images used for model training, validation, and testing. The performance of the model was evaluated on a test set and also by comparison with the performance of clinicians (general practitioners and endodontists) with and without the help of the model on independent 120 images. The performance of the Mask R-CNN prediction model was high with the mean average precision (mAP) of 0.88 (95% CI 0.83-0.93) and area under the precision-recall curve of 0.91 (95% CI 0.88-0.94), 0.83 (95% CI 0.81-0.85), 0.91 (95% CI 0.90-0.92) on healed, healing and disease, respectively. The prediction metrics of general practitioners and endodontists significantly improved with the help of Mask R-CNN outperforming clinicians alone with mAP increasing from 0.75 (95% CI 0.72-0.78) to 0.84 (95% CI 0.81-0.87) and 0.88 (95% CI 0.85-0.91) to 0.92 (95% CI 0.89-0.95), respectively. In conclusion, deep learning-based segmentation model had the potential to predict non-surgical endodontic treatment outcomes from periapical radiographic images and were expected to aid in endodontic treatment.

摘要

本研究旨在评估一种基于深度学习的分割模型在预测非手术牙髓治疗结果方面的性能。回顾性收集了2015年至2021年泰国法政大学医院牙髓科医生进行的常规根管治疗中每颗牙齿的术前和术后3年根尖X线影像。收集了1200颗牙齿的术前X线影像,并获得了3年的随访结果(440颗愈合、400颗正在愈合、360颗病变)。基于掩膜区域的卷积神经网络(Mask R-CNN)用于在图像中按像素将牙根与其他结构分割开,并训练其预测愈合、正在愈合和病变的类别标签。三名牙髓科医生对用于模型训练、验证和测试的1080张图像进行了标注。在一个测试集上评估了该模型的性能,并通过与临床医生(全科医生和牙髓科医生)在有无该模型帮助下对120张独立图像的性能进行比较来评估。Mask R-CNN预测模型的性能较高,在愈合、正在愈合和病变类别上的平均平均精度(mAP)分别为0.88(95%可信区间0.83 - 0.93)、精确召回率曲线下面积分别为0.91(95%可信区间0.88 - 0.94)、0.83(95%可信区间0.81 - 0.85)、0.91(95%可信区间0.90 - 0.92)。在Mask R-CNN的帮助下,全科医生和牙髓科医生的预测指标显著提高,mAP分别从0.75(95%可信区间0.72 - 0.78)提高到0.84(95%可信区间0.81 - 0.87)以及从0.88(95%可信区间0.85 - 0.91)提高到0.92(95%可信区间0.89 - 0.95),优于单独的临床医生。总之,基于深度学习的分割模型有潜力从根尖X线影像预测非手术牙髓治疗结果,并有望辅助牙髓治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d391/11687807/7fdbceddd669/pone.0310925.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验