Suppr超能文献

T 簇在检测前交叉韧带重建膝关节和健康膝关节的早期及纵向变化方面比平均 T 变化更敏感。

T Clusters Are More Sensitive Than Mean T Change to Detect Early and Longitudinal Changes in Anterior Cruciate Ligament Reconstructed and Healthy Knees.

作者信息

Pai S Anoosha, Gatti Anthony A, Black Marianne S, Young Katherine A, Desai Arjun D, Barbieri Marco, Asay Jessica L, Sherman Seth L, Gold Garry E, Kogan Feliks, Hargreaves Brian A, Chaudhari Akshay S

机构信息

Department of Bioengineering, Stanford University, Stanford, California, USA.

Department of Radiology, Stanford University, Stanford, California, USA.

出版信息

J Magn Reson Imaging. 2025 Jun;61(6):2615-2629. doi: 10.1002/jmri.29689. Epub 2024 Dec 30.

Abstract

BACKGROUND

Post-traumatic osteoarthritis (PTOA) often follows anterior cruciate ligament reconstruction (ACLR), leading to early cartilage degradation. Change in mean T fails to capture subject-specific spatial-temporal variations, highlighting the need for robust quantitative methods for early PTOA detection and monitoring.

PURPOSE/HYPOTHESIS: Develop and apply 3D T cluster analysis to ACLR and healthy knees over 2.5 years.

STUDY TYPE

Longitudinal case-control study.

SUBJECTS

ACLR and contralateral knees of 15 subjects (9 male/6 female, 37.7 ± 10 years) and right knee of 15 matched controls (9 male/6 female, 37.1 ± 12 years) were scanned at 3 weeks, 3, 9, 18, and 30 months post-ACLR.

SEQUENCE

3 T Quantitative double echo steady state sequence.

ASSESSMENT

"T cluster analysis" was developed, incorporating registration and thresholding methods to identify and quantify elevated T regions (T clusters, TC) in femoral cartilage. Percentage of cartilage covered by T clusters (TC), mean cluster size (TC), the number of clusters (TC), and ΔTMean (change in mean femoral cartilage T relative to visit 1) were computed for all knees.

STATISTICAL TESTS

A linear mixed model assessed knee, time, and knee-time interaction effects on each outcome metric (P < 0.05), with effect sizes (η ) describing the sensitivity of these effects to longitudinal changes.

RESULTS

TC (η  = 0.22), TC, (η  = 0.14), and TC (η  = 0.51) showed significant and systematic difference between knees (ACLR > contralateral > control). TC (η  = 0.24), TC (η  = 0.17), and TC (η  = 0.11) showed significant longitudinal change across all knees. Specifically, ACLR knees exhibited a significant increase in TC (η  = 0.21), TC (η  = 0.13), and a decrease in TC (η  = 0.07) with time. ΔTMean showed significant difference between knees (η  = 0.15), increase with time (η  = 0.04), with no significant knee-time interaction (η  = 0.00, P = 0.772 [contralateral], P = 0.482 [control]).

CONCLUSION

TC metrics are more sensitive than ΔTMean for longitudinal monitoring of femoral cartilage post ACLR. Our findings suggest potential merging of T clusters overtime, forming larger areas of cartilage degradation in ACLR knees.

LEVEL OF EVIDENCE

1 TECHNICAL EFFICACY: Stage 2.

摘要

背景

创伤后骨关节炎(PTOA)常发生在前交叉韧带重建(ACLR)之后,导致早期软骨退变。平均T值的变化未能捕捉到个体特异性的时空变化,这凸显了需要强大的定量方法来早期检测和监测PTOA。

目的/假设:开发并应用三维T值聚类分析,对ACLR患者和健康膝关节进行为期2.5年的研究。

研究类型

纵向病例对照研究。

研究对象

15名受试者(9名男性/6名女性,37.7±10岁)的ACLR膝关节和对侧膝关节,以及15名匹配对照者(9名男性/6名女性,37.1±12岁)的右膝关节在ACLR术后3周、3个月、9个月、18个月和30个月进行扫描。

序列

3T定量双回波稳态序列。

评估

开发了“T值聚类分析”,结合配准和阈值化方法,以识别和量化股骨软骨中T值升高的区域(T值聚类,TC)。计算所有膝关节中被T值聚类覆盖的软骨百分比(TC)、平均聚类大小(TC)、聚类数量(TC)以及ΔTMean(相对于第1次随访时股骨软骨平均T值的变化)。

统计检验

采用线性混合模型评估膝关节、时间以及膝关节-时间交互作用对每个结果指标的影响(P<0.05),效应大小(η)描述这些效应对纵向变化的敏感性。

结果

TC(η=0.22)%、TC(η=0.14)%和TC(η=0.51)在膝关节之间显示出显著且系统性的差异(ACLR>对侧>对照)。TC(η=0.24)、TC(η=0.17)和TC(η=0.11)在所有膝关节中均显示出显著的纵向变化。具体而言,ACLR膝关节的TC(η=0.21)%、TC(η=0.13)%随时间显著增加,而TC(η=0.07)%随时间下降。ΔTMean在膝关节之间显示出显著差异(η=0.15),随时间增加(η=0.04),且无显著的膝关节-时间交互作用(η=0.00,P=0.772[对侧],P=0.482[对照])。

结论

TC指标在纵向监测ACLR术后股骨软骨方面比ΔTMean更敏感。我们的研究结果表明,随着时间的推移,T值聚类可能会合并,在ACLR膝关节中形成更大的软骨退变区域。

证据水平

1技术效能:2级。

相似文献

本文引用的文献

2
Risk factors of cartilage lesion after anterior cruciate ligament reconstruction.前交叉韧带重建术后软骨损伤的危险因素。
Front Cell Dev Biol. 2022 Sep 8;10:935795. doi: 10.3389/fcell.2022.935795. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验