Suppr超能文献

DLGRAFE-Net:一种基于双重损失引导的残差注意力和特征增强网络的息肉分割方法。

DLGRAFE-Net: A double loss guided residual attention and feature enhancement network for polyp segmentation.

机构信息

College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China.

Hebei Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan, China.

出版信息

PLoS One. 2024 Sep 12;19(9):e0308237. doi: 10.1371/journal.pone.0308237. eCollection 2024.

Abstract

Colon polyps represent a common gastrointestinal form. In order to effectively treat and prevent complications arising from colon polyps, colon polypectomy has become a commonly used therapeutic approach. Accurately segmenting polyps from colonoscopy images can provide valuable information for early diagnosis and treatment. Due to challenges posed by illumination and contrast variations, noise and artifacts, as well as variations in polyp size and blurred boundaries in polyp images, the robustness of segmentation algorithms is a significant concern. To address these issues, this paper proposes a Double Loss Guided Residual Attention and Feature Enhancement Network (DLGRAFE-Net) for polyp segmentation. Firstly, a newly designed Semantic and Spatial Information Aggregation (SSIA) module is used to extract and fuse edge information from low-level feature graphs and semantic information from high-level feature graphs, generating local loss-guided training for the segmentation network. Secondly, newly designed Deep Supervision Feature Fusion (DSFF) modules are utilized to fuse local loss feature graphs with multi-level features from the encoder, addressing the negative impact of background imbalance caused by varying polyp sizes. Finally, Efficient Feature Extraction (EFE) decoding modules are used to extract spatial information at different scales, establishing longer-distance spatial channel dependencies to enhance the overall network performance. Extensive experiments conducted on the CVC-ClinicDB and Kvasir-SEG datasets demonstrate that the proposed network outperforms all mainstream networks and state-of-the-art networks, exhibiting superior performance and stronger generalization capabilities.

摘要

结肠息肉是一种常见的胃肠道形式。为了有效治疗和预防结肠息肉引起的并发症,结肠息肉切除术已成为一种常用的治疗方法。准确地从结肠镜图像中分割息肉可以为早期诊断和治疗提供有价值的信息。由于光照和对比度变化、噪声和伪影以及息肉大小和边界模糊的变化等挑战,分割算法的鲁棒性是一个重要的关注点。为了解决这些问题,本文提出了一种用于息肉分割的双损失引导残差注意力和特征增强网络(DLGRAFE-Net)。首先,使用新设计的语义和空间信息聚合(SSIA)模块从低级特征图中提取和融合边缘信息,并从高级特征图中提取语义信息,为分割网络提供局部损失引导训练。其次,使用新设计的深度监督特征融合(DSFF)模块融合局部损失特征图和编码器的多层次特征,解决了由于息肉大小变化导致的背景不平衡的负面影响。最后,使用高效特征提取(EFE)解码模块提取不同尺度的空间信息,建立更长距离的空间通道依赖关系,增强整体网络性能。在 CVC-ClinicDB 和 Kvasir-SEG 数据集上进行的广泛实验表明,所提出的网络优于所有主流网络和最先进的网络,表现出更好的性能和更强的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验