Suppr超能文献

一种不依赖肠道微生物群的机制塑造了患有MASH的小鼠的胆汁酸池。

A gut microbiota-independent mechanism shapes the bile acid pool in mice with MASH.

作者信息

Gillard Justine, Roumain Martin, Picalausa Corinne, Thibaut Morgane M, Clerbaux Laure-Alix, Tailleux Anne, Staels Bart, Muccioli Giulio G, Bindels Laure B, Leclercq Isabelle A

机构信息

Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium.

Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.

出版信息

JHEP Rep. 2024 Jun 20;6(11):101148. doi: 10.1016/j.jhepr.2024.101148. eCollection 2024 Nov.

Abstract

BACKGROUND & AIMS: An imbalance between primary and secondary bile acids contributes to the development of metabolic dysfunction-associated steatohepatitis (MASH). The precise mechanisms underlying changes in the bile acid pool in MASH remain to be identified. As gut bacteria convert primary bile acids to secondary bile acids, we investigated the contribution of the gut microbiota and its metabolizing activities to bile acid alterations in MASH.

METHODS

To disentangle the influence of MASH from environmental and dietary factors, high-fat diet fed mice were compared with their high-fat diet fed wildtype littermates. We developed functional assays (stable isotope labeling and experiments) to extend the analyses beyond a mere study of gut microbiota composition (16S rRNA gene sequencing). Key findings were confirmed in C57BL/6J mice were fed a Western and high-fructose diet, as an independent mouse model of MASH.

RESULTS

Although mice with MASH exhibited lower levels of secondary 7α-dehydroxylated bile acids (3.5-fold lower,  = 0.0008), the gut microbial composition was similar in mice with and without MASH. Similar gut microbial bile salt hydrolase and 7α-dehydroxylating activities could not explain the low levels of secondary 7α-dehydroxylated bile acids. Furthermore, the 7α-dehydroxylating activity was unaffected by administration in mice with a non-standardized gut microbiota. By exploring alternative mechanisms, we identified an increased bile acid 7α-rehydroxylation mediated by liver CYP2A12 and CYP2A22 enzymes (4.0-fold higher, <0.0001), that reduces secondary 7α-dehydroxylated bile acid levels in MASH.

CONCLUSIONS

This study reveals a gut microbiota-independent mechanism that alters the level of secondary bile acids and contributes to the development of MASH in mice.

IMPACT AND IMPLICATIONS

Although changes in bile acid levels are implicated in the development of metabolic dysfunction-associated steatohepatitis (MASH), the precise mechanisms underpinning these alterations remain elusive. In this study, we investigated the mechanisms responsible for the changes in bile acid levels in mouse models of MASH. Our results support that neither the composition nor the metabolic activity of the gut microbiota can account for the alterations in the bile acid pool. Instead, we identified hepatic 7α-rehydroxylation of secondary bile acids as a gut microbiota-independent factor contributing to the reduced levels of secondary bile acids in mice with MASH. Further investigation is warranted to understand bile acid metabolism and its physiological implications in clinical MASH. Nonetheless, our findings hold promise for exploring novel therapeutic interventions for MASH.

摘要

背景与目的

初级胆汁酸和次级胆汁酸之间的失衡会导致代谢功能障碍相关脂肪性肝炎(MASH)的发生。MASH中胆汁酸池变化的具体机制仍有待确定。由于肠道细菌可将初级胆汁酸转化为次级胆汁酸,我们研究了肠道微生物群及其代谢活性对MASH中胆汁酸改变的作用。

方法

为了区分MASH与环境和饮食因素的影响,将高脂饮食喂养的小鼠与其高脂饮食喂养的野生型同窝小鼠进行比较。我们开发了功能测定法(稳定同位素标记和实验),以将分析扩展到单纯的肠道微生物群组成研究(16S rRNA基因测序)之外。在喂食西式和高果糖饮食的C57BL/6J小鼠中证实了关键发现,这是MASH的独立小鼠模型。

结果

尽管患有MASH的小鼠次级7α-脱羟基化胆汁酸水平较低(低3.5倍,P = 0.0008),但患有和未患有MASH的小鼠肠道微生物组成相似。相似的肠道微生物胆汁盐水解酶和7α-脱羟基化活性无法解释次级7α-脱羟基化胆汁酸的低水平。此外,在肠道微生物群未标准化的小鼠中,7α-脱羟基化活性不受给药的影响。通过探索其他机制,我们发现肝脏CYP2A12和CYP2A22酶介导的胆汁酸7α-再羟基化增加(高4.0倍,P<0.0001),这降低了MASH中次级7α-脱羟基化胆汁酸的水平。

结论

本研究揭示了一种不依赖肠道微生物群的机制,该机制可改变次级胆汁酸水平并促进小鼠MASH的发展。

影响与意义

尽管胆汁酸水平的变化与代谢功能障碍相关脂肪性肝炎(MASH)的发生有关,但其潜在的具体机制仍不清楚。在本研究中,我们研究了MASH小鼠模型中胆汁酸水平变化的机制。我们的结果支持肠道微生物群的组成和代谢活性都不能解释胆汁酸池的改变。相反,我们发现次级胆汁酸的肝脏7α-再羟基化是一个不依赖肠道微生物群的因素,导致MASH小鼠次级胆汁酸水平降低。有必要进一步研究以了解胆汁酸代谢及其在临床MASH中的生理意义。尽管如此,我们的发现为探索MASH的新型治疗干预措施带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d2/11686050/b3ac6b1c0ebf/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验