Suppr超能文献

基于神经网络的超边预测中的模糊性。

Ambiguities in neural-network-based hyperedge prediction.

作者信息

Wan Changlin, Zhang Muhan, Dang Pengtao, Hao Wei, Cao Sha, Li Pan, Zhang Chi

机构信息

Purdue University, West Lafayette, IN, USA.

Indiana University, Indianapolis, IN, USA.

出版信息

J Appl Comput Topol. 2024 Oct;8(5):1333-1361. doi: 10.1007/s41468-024-00172-x. Epub 2024 May 7.

Abstract

A hypergraph is a generalization of a graph that depicts higher-order relations. Predicting higher-order relations, i.e. hyperedges, is a fundamental problem in hypergraph studies, and has immense applications in multiple domains. Recent development of graph neural network (GNN) advanced the prediction of pair-wise relations in . However, existing methods can hardly be extended to due to the lack of higher-order dependency in their graph embedding. In this paper, we mathematically formulate the ambiguity challenges of GNN-based representation of higher-order relations, namely and ambiguities. We further present HIGNN (Hyperedge Isomorphism Graph Neural Network) that utilizes bipartite graph neural network with hyperedge structural features to collectively tackle the two ambiguity issues in the hyperedge prediction problem. HIGNN achieves constant performance improvement compared with recent GNN-based models. In addition, we apply HIGNN to a new task, predicting genetic higher-order interactions on 3D genome organization data. HIGNN shows consistently higher prediction accuracy across different chromosomes, and generates novel findings on 4-way gene interactions, which is further validated by existing literature.

摘要

超图是一种描述高阶关系的图的泛化形式。预测高阶关系,即超边,是超图研究中的一个基本问题,并且在多个领域有广泛应用。图神经网络(GNN)的最新发展推动了对成对关系的预测。然而,由于现有方法在图嵌入中缺乏高阶依赖性,因此很难扩展到超图。在本文中,我们从数学上阐述了基于GNN的高阶关系表示的模糊性挑战,即 和 模糊性。我们进一步提出了HIGNN(超边同构图神经网络),它利用具有超边结构特征的二分图神经网络来共同解决超边预测问题中的两个模糊性问题。与最近基于GNN的模型相比,HIGNN实现了性能的持续提升。此外,我们将HIGNN应用于一项新任务,即预测三维基因组组织数据上的遗传高阶相互作用。HIGNN在不同染色体上始终显示出更高的预测准确性,并在四路基因相互作用方面产生了新的发现,这进一步得到了现有文献的验证。

相似文献

1
Ambiguities in neural-network-based hyperedge prediction.基于神经网络的超边预测中的模糊性。
J Appl Comput Topol. 2024 Oct;8(5):1333-1361. doi: 10.1007/s41468-024-00172-x. Epub 2024 May 7.
5
Theory of percolation on hypergraphs.超图上的渗流理论。
Phys Rev E. 2024 Jan;109(1-1):014306. doi: 10.1103/PhysRevE.109.014306.
6
Hypergraph Isomorphism Computation.超图同构计算
IEEE Trans Pattern Anal Mach Intell. 2024 May;46(5):3880-3896. doi: 10.1109/TPAMI.2024.3353199. Epub 2024 Apr 3.
7
HGNN: General Hypergraph Neural Networks.HGNN:广义超图神经网络。
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3181-3199. doi: 10.1109/TPAMI.2022.3182052. Epub 2023 Feb 3.
10
Adaptive Neural Message Passing for Inductive Learning on Hypergraphs.用于超图归纳学习的自适应神经消息传递
IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):19-31. doi: 10.1109/TPAMI.2024.3434483. Epub 2024 Dec 4.

本文引用的文献

4
Organization and regulation of gene transcription.基因转录的组织和调节。
Nature. 2019 Sep;573(7772):45-54. doi: 10.1038/s41586-019-1517-4. Epub 2019 Aug 28.
5
From networks to optimal higher-order models of complex systems.从网络到复杂系统的最优高阶模型。
Nat Phys. 2019 Apr;15(4):313-320. doi: 10.1038/s41567-019-0459-y. Epub 2019 Mar 25.
6
Simplicial closure and higher-order link prediction.单纯复形闭包与高阶链接预测。
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11221-E11230. doi: 10.1073/pnas.1800683115. Epub 2018 Nov 9.
8
The Three-Dimensional Organization of Mammalian Genomes.哺乳动物基因组的三维组织。
Annu Rev Cell Dev Biol. 2017 Oct 6;33:265-289. doi: 10.1146/annurev-cellbio-100616-060531. Epub 2017 Aug 7.
10
Higher-order organization of complex networks.复杂网络的高阶组织
Science. 2016 Jul 8;353(6295):163-6. doi: 10.1126/science.aad9029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验