Wan Changlin, Zhang Muhan, Dang Pengtao, Hao Wei, Cao Sha, Li Pan, Zhang Chi
Purdue University, West Lafayette, IN, USA.
Indiana University, Indianapolis, IN, USA.
J Appl Comput Topol. 2024 Oct;8(5):1333-1361. doi: 10.1007/s41468-024-00172-x. Epub 2024 May 7.
A hypergraph is a generalization of a graph that depicts higher-order relations. Predicting higher-order relations, i.e. hyperedges, is a fundamental problem in hypergraph studies, and has immense applications in multiple domains. Recent development of graph neural network (GNN) advanced the prediction of pair-wise relations in . However, existing methods can hardly be extended to due to the lack of higher-order dependency in their graph embedding. In this paper, we mathematically formulate the ambiguity challenges of GNN-based representation of higher-order relations, namely and ambiguities. We further present HIGNN (Hyperedge Isomorphism Graph Neural Network) that utilizes bipartite graph neural network with hyperedge structural features to collectively tackle the two ambiguity issues in the hyperedge prediction problem. HIGNN achieves constant performance improvement compared with recent GNN-based models. In addition, we apply HIGNN to a new task, predicting genetic higher-order interactions on 3D genome organization data. HIGNN shows consistently higher prediction accuracy across different chromosomes, and generates novel findings on 4-way gene interactions, which is further validated by existing literature.
超图是一种描述高阶关系的图的泛化形式。预测高阶关系,即超边,是超图研究中的一个基本问题,并且在多个领域有广泛应用。图神经网络(GNN)的最新发展推动了对成对关系的预测。然而,由于现有方法在图嵌入中缺乏高阶依赖性,因此很难扩展到超图。在本文中,我们从数学上阐述了基于GNN的高阶关系表示的模糊性挑战,即 和 模糊性。我们进一步提出了HIGNN(超边同构图神经网络),它利用具有超边结构特征的二分图神经网络来共同解决超边预测问题中的两个模糊性问题。与最近基于GNN的模型相比,HIGNN实现了性能的持续提升。此外,我们将HIGNN应用于一项新任务,即预测三维基因组组织数据上的遗传高阶相互作用。HIGNN在不同染色体上始终显示出更高的预测准确性,并在四路基因相互作用方面产生了新的发现,这进一步得到了现有文献的验证。