Suppr超能文献

模拟反向工程细胞周围基质用于关节软骨再生的发育动力学。

Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration.

作者信息

Yang Yongkang, Xu Ziheng, He Songlin, Wang Chao, Li Runmeng, Zhang Ruiyang, Li Jianwei, Yang Zhen, Li Hao, Liu Shuyun, Guo Quanyi

机构信息

School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.

Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, 999077, PR China.

出版信息

Biomaterials. 2025 Jun;317:123066. doi: 10.1016/j.biomaterials.2024.123066. Epub 2024 Dec 28.

Abstract

The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes. Next, we demonstrate a rationally designed layer-by-layer single-cell encapsulation system which can mimic PCM mechanical responses and enhance MSC chondrogenesis via reestablished the mechanical coupling of PCM-like primitive matrix and chondrocytes. This successfully simulates the temporal and spatial characteristics of collagen secretion. Through investigation of the micromechanical environment of the cells and full-atom simulation analysis of TRPV4, we determine the specific mechanisms by which cellular mechanical forces near the cell are converted into biological signals. The TRPV4-YAP/TAZ-PI3K-Akt signaling pathway is involved in MSC cartilage formation through a joint analysis of the mRNA sequencing and spatial transcriptome results. In a rat model of articular cartilage defects, our inversely engineered pericellular matrix-encapsulated MSC-loaded scaffolds show regenerative performance that are superior to those of scaffolds loaded with only MSCs. These results demonstrate the feasibility of using a PCM-mimicking system to improve MSC chondrogenesis and the efficacy of AC repair.

摘要

支架基质与间充质干细胞(MSCs)的力学不匹配一直是基于MSCs的关节软骨(AC)再生治疗临床应用中的一个长期问题。现有的组织工程支架低估了天然软骨细胞周细胞基质(PCM)的重要性。在此,我们揭示了软骨细胞周围胶原蛋白分布的时空特征。接下来,我们展示了一种合理设计的逐层单细胞封装系统,该系统可以模拟PCM的力学响应,并通过重新建立类PCM原始基质与软骨细胞的力学耦合来增强MSCs的软骨生成。这成功地模拟了胶原蛋白分泌的时空特征。通过对细胞微力学环境的研究以及对TRPV4的全原子模拟分析,我们确定了细胞附近的细胞机械力转化为生物信号的具体机制。通过对mRNA测序和空间转录组结果的联合分析,TRPV4-YAP/TAZ-PI3K-Akt信号通路参与了MSCs软骨形成。在大鼠关节软骨缺损模型中,我们反向工程的周细胞基质封装的负载MSCs的支架显示出优于仅负载MSCs的支架的再生性能。这些结果证明了使用PCM模拟系统改善MSCs软骨生成和AC修复效果的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验