Suppr超能文献

利用拉曼光谱对衰老和饮食偏好进行无创光学传感

Noninvasive Optical Sensing of Aging and Diet Preferences Using Raman Spectroscopy.

作者信息

Juárez Isaac D, Naron Alexandra, Blank Heidi, Polymenis Michael, Threadgill David W, Bailey Regan L, Stover Patrick J, Kurouski Dmitry

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.

Department of Nutrition, Texas A&M University, College Station, Texas 77843, United States.

出版信息

Anal Chem. 2025 Jan 14;97(1):969-975. doi: 10.1021/acs.analchem.4c05853. Epub 2025 Jan 1.

Abstract

Effective dietary strategies and interventions for monitoring dietary exposures require accurate and noninvasive methods to understand how diet modulates health and risk of obesity; advances in technology are transforming the landscape and enabling more specific tailored approaches to nutritional guidance. This study explores the use of Raman spectroscopy (RS), a noninvasive and nondestructive analytical technique, to identify changes in the mice skin in response to constant dietary exposures. We found that RS is highly accurate to determine body composition as a result of habitual dietary patterns, specifically Vegan, Typical American, and Ketogenic diets, all very common in the US context. RS is based on major differences in the intensities of vibrational bands that originate from collagen. Moreover, RS could be used to predict folate deficiency and identify the sex of the animals. Finally, we found that RS could be used to track the chronological age of the mice. Considering the hand-held nature of the utilized spectrometer, one can expect that RS could be used to monitor and, consequently, personalize effects of diet on the body composition.

摘要

用于监测饮食暴露的有效饮食策略和干预措施需要准确且无创的方法来了解饮食如何调节健康和肥胖风险;技术进步正在改变这一局面,并使营养指导能够采用更具针对性的定制方法。本研究探索了使用拉曼光谱(RS)这种无创且无损的分析技术,来识别小鼠皮肤因持续饮食暴露而产生的变化。我们发现,RS能够高度准确地确定因习惯性饮食模式(特别是纯素饮食、典型美式饮食和生酮饮食,这些在美国背景下都非常常见)导致的身体成分变化。RS基于源自胶原蛋白的振动带强度的主要差异。此外,RS可用于预测叶酸缺乏并识别动物的性别。最后,我们发现RS可用于追踪小鼠的实际年龄。考虑到所使用光谱仪的手持式特性,可以预期RS可用于监测饮食对身体成分的影响,并因此实现个性化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a11/11740184/13fe667516e6/ac4c05853_0004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验