Suppr超能文献

机器学习对双语中风后失语症恢复的预测:将见解与临床证据相结合。

Machine Learning Predictions of Recovery in Bilingual Poststroke Aphasia: Aligning Insights With Clinical Evidence.

作者信息

Marte Manuel Jose, Carpenter Erin, Scimeca Michael, Russell-Meill Marissa, Peñaloza Claudia, Grasemann Uli, Miikkulainen Risto, Kiran Swathi

机构信息

Center for Brain Recovery, Boston University, MA (M.J.M., E.C., M.S., M.R.-M., S.K.).

Department of Cognition, Development and Educational Psychology, Faculty of Psychology (C.P.).

出版信息

Stroke. 2025 Feb;56(2):494-504. doi: 10.1161/STROKEAHA.124.047867. Epub 2025 Jan 2.

Abstract

BACKGROUND

Predicting treated language improvement (TLI) and transfer to the untreated language (cross-language generalization, CLG) after speech-language therapy in bilingual individuals with poststroke aphasia is crucial for personalized treatment planning. This study evaluated machine learning models to predict TLI and CLG and identified the key predictive features (eg, patient severity, demographics, and treatment variables) aligning with clinical evidence.

METHODS

Forty-eight Spanish-English bilingual individuals with poststroke aphasia received 20 sessions of semantic feature-based naming treatment in either their first or second language. Comprehensive language, cognitive, and background bilingual experience assessments were administered pre- and post-treatment. Sixteen curated features spanning demographics, language abilities, cognition, and bilingual experience were used as inputs to 6 machine learning algorithms to predict treatment responders versus nonresponders and CLG vs no CLG.

RESULTS

The top 2 machine learning models achieved F1 scores of 0.767±0.153 for TLI and 0.790±0.172 for CLG. Interpretability analyses revealed that aphasia severity in the trained language, education, and cognitive performance were key predictors of TLI. Aphasia severity in the untreated language and cognitive performance emerged as influential features of CLG. These aligned with expectations based on prior literature.

CONCLUSIONS

For the first time, machine learning models reveal that factors such as patient severity and demographics predict TLI and CLG after therapy in Spanish-English bilingual individuals with poststroke aphasia. Consideration of both treated and untreated language severity, as well as cognitive assessment performance, when forecasting treatment outcomes in an underserved population such Spanish-English stroke survivors, can meaningfully impact their short-term and long-term clinical care.

摘要

背景

预测中风后失语的双语个体在言语语言治疗后的治疗性语言改善(TLI)以及向未治疗语言的迁移(跨语言泛化,CLG)对于个性化治疗计划至关重要。本研究评估了机器学习模型以预测TLI和CLG,并确定了与临床证据相符的关键预测特征(例如患者严重程度、人口统计学特征和治疗变量)。

方法

48名西班牙-英语双语中风后失语个体在其第一语言或第二语言中接受了20节基于语义特征的命名治疗。在治疗前后进行了全面的语言、认知和背景双语经验评估。16个经过整理的特征,涵盖人口统计学、语言能力、认知和双语经验,被用作6种机器学习算法的输入,以预测治疗反应者与无反应者以及CLG与无CLG。

结果

前2个机器学习模型在TLI方面的F1分数为0.767±0.153,在CLG方面为0.790±0.172。可解释性分析表明,训练语言中的失语严重程度、教育程度和认知表现是TLI的关键预测因素。未治疗语言中的失语严重程度和认知表现成为CLG的影响因素。这些与基于先前文献的预期相符。

结论

机器学习模型首次揭示,患者严重程度和人口统计学特征等因素可预测西班牙-英语双语中风后失语个体治疗后的TLI和CLG。在预测像西班牙-英语中风幸存者这样服务不足人群的治疗结果时,考虑治疗和未治疗语言的严重程度以及认知评估表现,可对他们的短期和长期临床护理产生重大影响。

相似文献

3
Therapy for naming difficulties in bilingual aphasia: which language benefits?双语失语症命名困难的治疗:哪种语言受益?
Int J Lang Commun Disord. 2011 Jan-Feb;46(1):48-62. doi: 10.3109/13682822.2010.484845. Epub 2010 Jul 26.
7
A theoretical account of lexical and semantic naming deficits in bilingual aphasia.双语失语症中词汇和语义命名缺陷的理论解释。
J Speech Lang Hear Res. 2013 Aug;56(4):1314-27. doi: 10.1044/1092-4388(2012/12-0091). Epub 2013 Jul 1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验