Suppr超能文献

预测失语症患者的严重程度:一种自然语言处理和机器学习方法。

Predicting Severity in People with Aphasia: A Natural Language Processing and Machine Learning Approach.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2299-2302. doi: 10.1109/EMBC46164.2021.9630694.

Abstract

Speech language pathologists need an accurate assessment of the severity of people with aphasia (PWA) to design and provide the best course of therapy. Currently, severity is evaluated manually by an increasingly scarce pool of experienced and well-trained clinicians, taking considerable time resources. By analyzing the transcripts from three discourse elicitation methods, this study combines natural language processing (NLP) and machine learning (ML) to predict the severity of PWA, both by score and severity level. By engineering language features from PWA tasks, an unstructured k-means clustering presents distinct aphasia types, showing validity of the selected features. We develop regression models to predict severity scores along with a classification of severity by level (Mild, Moderate, Severe, and Very Severe) to assist clinicians to easily plan and monitor the course of treatment. Our best ML regression model uses a deep neural network and results in a mean absolute error (MAE) of 0.0671 and root mean squared error (RMSE) of 0.0922. Our best classification model uses a random forest and result in an overall accuracy of 73%, with the highest accuracy of 87.5% for mild severity. Our results suggest that using NLP and ML provides an accurate and cost-effective approach to evaluate the severity levels in PWA to consequently help clinicians determine rehabilitation procedures.

摘要

言语语言病理学家需要准确评估失语症患者 (PWA) 的严重程度,以便设计和提供最佳的治疗方案。目前,严重程度是由经验丰富且训练有素的临床医生人工评估的,这需要大量的时间资源。本研究通过分析三种话语引出方法的记录,将自然语言处理 (NLP) 和机器学习 (ML) 相结合,根据分数和严重程度级别来预测 PWA 的严重程度。通过从 PWA 任务中构建语言特征,无结构的 k-means 聚类呈现出不同的失语症类型,显示出所选特征的有效性。我们开发了回归模型来预测严重程度分数以及严重程度的分类(轻度、中度、重度和极重度),以帮助临床医生轻松规划和监测治疗过程。我们最好的 ML 回归模型使用深度神经网络,平均绝对误差 (MAE) 为 0.0671,均方根误差 (RMSE) 为 0.0922。我们最好的分类模型使用随机森林,整体准确率为 73%,轻度严重程度的准确率最高,为 87.5%。我们的研究结果表明,使用 NLP 和 ML 提供了一种准确且具有成本效益的方法来评估 PWA 的严重程度级别,从而帮助临床医生确定康复程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验