Suppr超能文献

用于通过化学和物理机制双重去除生物膜的活性微型机器人

Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms.

作者信息

Peng Xia, Oral Cagatay M, Urso Mario, Ussia Martina, Pumera Martin

机构信息

Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic.

Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, TW-40402 Taichung, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3608-3619. doi: 10.1021/acsami.4c18360. Epub 2025 Jan 2.

Abstract

Bacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFeO (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces. Magnetically driven ZFO microrobots were realized by synthesizing ZFO microspheres through a low-cost and large-scale hydrothermal synthesis, followed by a calcination process. Then, a Pt layer was deposited on the surface of the ZFO microspheres to break their symmetry, resulting in self-propelled light-driven Janus ZFO/Pt microrobots. Light-driven ZFO/Pt microrobots exhibited active locomotion under UV light irradiation and controllable motion in terms of "stop and go" features. Magnetically driven ZFO microrobots were capable of maneuvering precisely when subjected to an external rotating magnetic field. These microrobots could eliminate Gram-negative () biofilms through photogenerated reactive oxygen species (ROS)-related antibacterial properties in combination with their light-powered active locomotion, accelerating the mass transfer to remove biofilms more effectively in water. Moreover, the actuation of magnetically driven ZFO microrobots allowed for the physical disruption of biofilms, which represents a reliable alternative to photocatalysis for the removal of strongly anchored biofilms in confined spaces. With their versatile characteristics, the envisioned microrobots highlight a significant potential for biofilm removal with high efficacy in both open and confined spaces, such as the pipelines of industrial plants.

摘要

细菌生物膜是牢固附着于固体表面的复杂多细胞群落。它们被广泛认为是对人类健康的重大威胁,导致诸如医疗植入物上的持续性感染和饮用水系统中的严重污染等问题。作为生物膜的一种潜在治疗方法,这项工作提出了两种策略:(i)光驱动的ZnFeO(ZFO)/Pt微型机器人用于生物膜的光降解,以及(ii)磁驱动的ZFO微型机器人用于从表面机械去除生物膜。磁驱动的ZFO微型机器人是通过低成本大规模水热合成法合成ZFO微球,然后进行煅烧过程实现的。接着,在ZFO微球表面沉积一层Pt以打破其对称性,从而得到自推进的光驱动Janus ZFO/Pt微型机器人。光驱动的ZFO/Pt微型机器人在紫外光照射下表现出活跃的运动能力,并且具有“启停”特性的可控运动。磁驱动的ZFO微型机器人在受到外部旋转磁场作用时能够精确操控。这些微型机器人可以通过光生活性氧(ROS)相关的抗菌特性及其光驱动的活跃运动来消除革兰氏阴性()生物膜,加速传质,从而更有效地在水中去除生物膜。此外,磁驱动的ZFO微型机器人的驱动作用能够对生物膜进行物理破坏,这是在受限空间中去除牢固附着的生物膜的光催化可靠替代方法。凭借其多功能特性,所设想的微型机器人在开放和受限空间(如工业厂房的管道)中高效去除生物膜方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdf4/11744513/858d1b7ad571/am4c18360_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验