Huang Xinyu, Tong Lei, Xu Langlang, Shi Wenhao, Peng Zhuiri, Li Zheng, Yu Xiangxiang, Li Wei, Wang Yilun, Zhang Xinliang, Gong Xuan, Xu Jianbin, Qiu Xiaoming, Wen Hongyang, Wang Jing, Hu Xuebin, Xiong Caihua, Ye Yu, Miao Xiangshui, Ye Lei
School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Hubei Yangtze Memory Laboratories, Wuhan, 430205, China.
Nat Commun. 2025 Jan 2;16(1):101. doi: 10.1038/s41467-024-55395-4.
Biological neural circuits demonstrate exceptional adaptability to diverse tasks by dynamically adjusting neural connections to efficiently process information. However, current two-dimension materials-based neuromorphic hardware mainly focuses on specific devices to individually mimic artificial synapse or heterosynapse or soma and encoding the inner neural states to realize corresponding mock object function. Recent advancements suggest that integrating multiple two-dimension material devices to realize brain-like functions including the inter-mutual connecting assembly engineering has become a new research trend. In this work, we demonstrate a two-dimension MoS-based reconfigurable analog hardware that emulate synaptic, heterosynaptic, and somatic functionalities. The inner-states and inter-connections of all modules co-encode versatile functions such as analog-to-digital/digital-to-analog conversion, and linear/nonlinear computations including integration, vector-matrix multiplication, convolution, to name a few. By assembling the functions to fit with different environment-interactive demanding tasks, this hardware experimentally achieves the reconstruction and image sharpening of medical images for diagnosis as well as circuit-level imitation of attention-switching and visual residual mechanisms for smart perception. This innovative hardware promotes the development of future general-purpose computing machines with high adaptability and flexibility to multiple tasks.
生物神经回路通过动态调整神经连接以有效处理信息,展现出对各种任务的卓越适应性。然而,当前基于二维材料的神经形态硬件主要聚焦于特定器件,以单独模拟人工突触或异突触或胞体,并对内部神经状态进行编码以实现相应的模拟对象功能。最近的进展表明,集成多个二维材料器件以实现类似大脑的功能,包括相互连接的组装工程,已成为一种新的研究趋势。在这项工作中,我们展示了一种基于二维MoS的可重构模拟硬件,它能够模拟突触、异突触和体细胞功能。所有模块的内部状态和互连共同编码多种功能,如模数/数模转换,以及线性/非线性计算,包括积分、向量矩阵乘法、卷积等等。通过组合这些功能以适应不同的环境交互需求任务,该硬件通过实验实现了用于诊断的医学图像的重建和锐化,以及用于智能感知的注意力切换和视觉残留机制的电路级模拟。这种创新硬件推动了未来对多种任务具有高适应性和灵活性的通用计算机的发展。