Russo Simone, Stanley Garrett B, Najafi Farzaneh
Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, GA, 30332-0535, Atlanta, USA.
Allen Institute, Brain and Consciousness Program, Seattle, WA, USA.
Sci Rep. 2025 Jan 2;15(1):350. doi: 10.1038/s41598-024-82536-y.
Neurons encode information in the highly variable spiking activity of neuronal populations, so that different repetitions of the same stimulus can generate action potentials that vary significantly in terms of the count and timing. How does spiking variability originate, and does it have a functional purpose? Leveraging large-scale intracellular electrophysiological data, we relate the spiking reliability of cortical neurons in-vitro during the intracellular injection of current resembling synaptic inputs to their morphologic, electrophysiologic, and transcriptomic classes. Our findings demonstrate that parvalbumin+ (PV) interneurons, a subclass of inhibitory neurons, show high reliability compared to other neuronal subclasses, particularly excitatory neurons. Through computational modeling, we predict that the high reliability of PV interneurons allows for strong and precise inhibition in downstream neurons, while the lower reliability of excitatory neurons allows for integrating multiple synaptic inputs leading to a spiking rate code. These findings illuminate how spiking variability in different neuronal classes affect information propagation in the brain, leading to precise inhibition and spiking rate codes.
神经元通过神经元群体高度可变的放电活动来编码信息,以至于相同刺激的不同重复能够产生在数量和时间方面差异显著的动作电位。放电变异性是如何产生的,它有功能上的目的吗?利用大规模细胞内电生理数据,我们将体外在注入类似突触输入的电流期间皮质神经元的放电可靠性与其形态学、电生理学和转录组学类别联系起来。我们的研究结果表明,小清蛋白阳性(PV)中间神经元,即抑制性神经元的一个亚类,与其他神经元亚类相比,表现出高可靠性,尤其是兴奋性神经元。通过计算建模,我们预测PV中间神经元的高可靠性允许对下游神经元进行强大而精确的抑制,而兴奋性神经元较低的可靠性允许整合多个突触输入从而产生放电频率编码。这些发现阐明了不同神经元类别的放电变异性如何影响大脑中的信息传播,从而导致精确的抑制和放电频率编码。