Suppr超能文献

用于髋至膝临床CT图像中骨骼和肌肉评估的具有不确定性估计的肌肉骨骼分割模型的验证。

Validation of musculoskeletal segmentation model with uncertainty estimation for bone and muscle assessment in hip-to-knee clinical CT images.

作者信息

Soufi Mazen, Otake Yoshito, Iwasa Makoto, Uemura Keisuke, Hakotani Tomoki, Hashimoto Masahiro, Yamada Yoshitake, Yamada Minoru, Yokoyama Yoichi, Jinzaki Masahiro, Kusano Suzushi, Takao Masaki, Okada Seiji, Sugano Nobuhiko, Sato Yoshinobu

机构信息

Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.

Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

出版信息

Sci Rep. 2025 Jan 2;15(1):125. doi: 10.1038/s41598-024-83793-7.

Abstract

Deep learning-based image segmentation has allowed for the fully automated, accurate, and rapid analysis of musculoskeletal (MSK) structures from medical images. However, current approaches were either applied only to 2D cross-sectional images, addressed few structures, or were validated on small datasets, which limit the application in large-scale databases. This study aimed to validate an improved deep learning model for volumetric MSK segmentation of the hip and thigh with uncertainty estimation from clinical computed tomography (CT) images. Databases of CT images from multiple manufacturers/scanners, disease status, and patient positioning were used. The segmentation accuracy, and accuracy in estimating the structures volume and density, i.e., mean HU, were evaluated. An approach for segmentation failure detection based on predictive uncertainty was also investigated. The model has improved all segmentation accuracy and structure volume/density evaluation metrics compared to a shallower baseline model with a smaller training database (N = 20). The predictive uncertainty yielded large areas under the receiver operating characteristic (AUROC) curves (AUROCs ≥ .95) in detecting inaccurate and failed segmentations. Furthermore, the study has shown an impact of the disease severity status on the model's predictive uncertainties when applied to a large-scale database. The high segmentation and muscle volume/density estimation accuracy and the high accuracy in failure detection based on the predictive uncertainty exhibited the model's reliability for analyzing individual MSK structures in large-scale CT databases.

摘要

基于深度学习的图像分割技术实现了对医学图像中肌肉骨骼(MSK)结构的全自动、准确且快速的分析。然而,当前的方法要么仅应用于二维横截面图像,涉及的结构较少,要么仅在小数据集上进行了验证,这限制了其在大规模数据库中的应用。本研究旨在验证一种改进的深度学习模型,用于从临床计算机断层扫描(CT)图像中对髋部和大腿进行肌肉骨骼体积分割,并进行不确定性估计。使用了来自多个制造商/扫描仪、疾病状态和患者体位的CT图像数据库。评估了分割准确性以及估计结构体积和密度(即平均HU值)的准确性。还研究了一种基于预测不确定性的分割失败检测方法。与具有较小训练数据库(N = 20)的较浅基线模型相比,该模型在所有分割准确性以及结构体积/密度评估指标方面均有提高。预测不确定性在检测不准确和失败的分割时,在接收器操作特征(AUROC)曲线下产生了较大面积(AUROCs≥0.95)。此外,该研究表明,当应用于大规模数据库时,疾病严重程度状态对模型的预测不确定性有影响。高分割准确性和肌肉体积/密度估计准确性以及基于预测不确定性的高失败检测准确性,表明了该模型在分析大规模CT数据库中个体肌肉骨骼结构方面的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e86/11696574/e74daee032e2/41598_2024_83793_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验