Zhong Wenjin, Ren XiaoXiao, Zhang HanWen
Macquarie University, Sydney, Australia.
The University of New South Wales, Sydney, Australia.
Sci Rep. 2025 Jan 2;15(1):64. doi: 10.1038/s41598-024-84629-0.
Detection and teeth segmentation from X-rays, aiding healthcare professionals in accurately determining the shape and growth trends of teeth. However, small dataset sizes due to patient privacy, high noise, and blurred boundaries between periodontal tissue and teeth pose challenges to the models' transportability and generalizability, making them prone to overfitting. To address these issues, we propose a novel model, named Grouped Attention and Cross-Layer Fusion Network (GCNet). GCNet effectively handles numerous noise points and significant individual differences in the data, achieving stable and precise segmentation on small-scale datasets. The model comprises two core modules: Grouped Global Attention (GGA) modules and Cross-Layer Fusion (CLF) modules. The GGA modules capture and group texture and contour features, while the CLF modules combine these features with deep semantic information to improve prediction. Experimental results on the Children's Dental Panoramic Radiographs dataset show that our model outperformed existing models such as GT-U-Net and Teeth U-Net, with a Dice coefficient of 0.9338, sensitivity of 0.9426, and specificity of 0.9821. The GCNet model also demonstrates clearer segmentation boundaries compared to other models.
从X光片中进行牙齿检测和分割,帮助医疗保健专业人员准确确定牙齿的形状和生长趋势。然而,由于患者隐私导致数据集规模较小、噪声较高以及牙周组织和牙齿之间的边界模糊,给模型的可迁移性和通用性带来了挑战,使其容易出现过拟合。为了解决这些问题,我们提出了一种名为分组注意力和跨层融合网络(GCNet)的新型模型。GCNet有效地处理了数据中的大量噪声点和显著的个体差异,在小规模数据集上实现了稳定而精确的分割。该模型由两个核心模块组成:分组全局注意力(GGA)模块和跨层融合(CLF)模块。GGA模块捕获并分组纹理和轮廓特征,而CLF模块将这些特征与深度语义信息相结合以改进预测。在儿童牙科全景X光片数据集上的实验结果表明,我们的模型优于GT-U-Net和牙齿U-Net等现有模型,其Dice系数为0.9338,灵敏度为0.9426,特异性为0.9821。与其他模型相比,GCNet模型的分割边界也更清晰。
Sci Rep. 2025-1-2
J Xray Sci Technol. 2023
BMC Med Imaging. 2024-7-19
Biomed Phys Eng Express. 2023-3-10
Med Image Anal. 2022-11
BMC Med Imaging. 2022-4-13
J Dent. 2022-7
IEEE Trans Med Imaging. 2020-8
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018-9
Phys Med Biol. 2020-10-22
Med Image Anal. 2017-7-26