Lin Ching-Heng, Liu Zhi-Yong, Chu Pao-Hsien, Chen Jung-Sheng, Wu Hsin-Hsu, Wen Ming-Shien, Kuo Chang-Fu, Chang Ting-Yu
Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan.
NPJ Digit Med. 2025 Jan 2;8(1):1. doi: 10.1038/s41746-024-01410-3.
Deep learning analysis of electrocardiography (ECG) may predict cardiovascular outcomes. We present a novel multi-task deep learning model, the ECG-MACE, which predicts the one-year first-ever major adverse cardiovascular events (MACE) using 2,821,889 standard 12-lead ECGs, including training (n = 984,895), validation (n = 422,061), and test (n = 1,414,933) sets, from Chang Gung Memorial Hospital database in Taiwan. Data from another independent medical center (n = 113,224) was retrieved for external validation. The model's performance achieves AUROCs of 0.90 for heart failure (HF), 0.85 for myocardial infarction (MI), 0.76 for ischemic stroke (IS), and 0.89 for mortality. Furthermore, it outperforms the Framingham risk score at 5-year MACEs and 10-year mortality prediction. Over 10-year follow-ups, the model-predicted-positive group exhibits significantly higher MACE incidences than the model-predicted-negative group (relative incidence ratio: HF: 15.28; MI: 7.87; IS: 4.74; mortality: 13.18). Using solely ECGs, ECG-MACE effectively predicts one-year events and exhibits long-term anticipation. It provides potential applications in preventive medicine.
心电图(ECG)的深度学习分析可能预测心血管结局。我们提出了一种新型多任务深度学习模型ECG-MACE,它使用来自台湾长庚纪念医院数据库的2,821,889份标准12导联心电图来预测首次发生的一年期主要不良心血管事件(MACE),包括训练集(n = 984,895)、验证集(n = 422,061)和测试集(n = 1,414,933)。从另一个独立医疗中心获取了数据(n = 113,224)用于外部验证。该模型在预测心力衰竭(HF)时的曲线下面积(AUROC)为0.90,心肌梗死(MI)为0.85,缺血性中风(IS)为0.76,死亡率为0.89。此外,在预测5年期MACE和10年期死亡率方面,它优于弗明汉风险评分。在超过10年的随访中,模型预测为阳性的组的MACE发生率显著高于模型预测为阴性的组(相对发生率:HF:15.28;MI:7.87;IS:4.74;死亡率:13.18)。仅使用心电图,ECG-MACE就能有效预测一年期事件并展现出长期预测能力。它在预防医学中具有潜在应用价值。