Suppr超能文献

一种基于多尺度特征融合的实时细胞图像分割方法。

A Real-Time Cell Image Segmentation Method Based on Multi-Scale Feature Fusion.

作者信息

Zhang Xinyuan, Zhang Yang, Li Zihan, Song Yujiao, Chen Shuhan, Mao Zhe, Liu Zhiyong, Liao Guanglan, Nie Lei

机构信息

School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China.

The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Bioengineering (Basel). 2025 Aug 5;12(8):843. doi: 10.3390/bioengineering12080843.

Abstract

Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing multi-scale heterogeneity, poorly delineated boundaries under limited annotation, and the inherent trade-off between computational efficiency and segmentation accuracy. We propose an innovative network architecture. First, a preprocessing pipeline combining contrast-limited adaptive histogram equalization (CLAHE) and Gaussian blur is introduced to balance noise suppression and local contrast enhancement. Second, a bidirectional feature pyramid network (BiFPN) is incorporated, leveraging cross-scale feature calibration to enhance multi-scale cell recognition. Third, adaptive kernel convolution (AKConv) is developed to capture the heterogeneous spatial distribution of glioma stem cells (GSCs) through dynamic kernel deformation, improving boundary segmentation while reducing model complexity. Finally, a probability density-guided non-maximum suppression (Soft-NMS) algorithm is proposed to alleviate cell under-detection. Experimental results demonstrate that the model achieves 95.7% mAP50 (box) and 95% mAP50 (mask) on the GSCs dataset with an inference speed of 38 frames per second. Moreover, it simultaneously supports dual-modality output for cell confluence assessment and precise counting, providing a reliable automated tool for tumor microenvironment research.

摘要

细胞汇合度和细胞数量是评估细胞生长状态的关键指标,有助于疾病诊断和靶向治疗的开发。准确高效的细胞分割对于量化这些指标至关重要。然而,当前的分割方法在解决多尺度异质性、有限标注下边界划分不佳以及计算效率与分割精度之间的内在权衡等方面仍面临重大挑战。我们提出了一种创新的网络架构。首先,引入了一种结合对比度受限自适应直方图均衡化(CLAHE)和高斯模糊的预处理管道,以平衡噪声抑制和局部对比度增强。其次,并入了双向特征金字塔网络(BiFPN),利用跨尺度特征校准来增强多尺度细胞识别。第三,开发了自适应内核卷积(AKConv),通过动态内核变形来捕捉胶质瘤干细胞(GSCs)的异质空间分布,在降低模型复杂度的同时改善边界分割。最后,提出了一种概率密度引导的非极大值抑制(Soft-NMS)算法,以缓解细胞检测不足的问题。实验结果表明,该模型在GSCs数据集上实现了95.7%的mAP50(框)和95%的mAP50(掩码),推理速度为每秒38帧。此外,它同时支持用于细胞汇合度评估和精确计数的双模态输出,为肿瘤微环境研究提供了可靠的自动化工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6447/12383622/88dc5b82867c/bioengineering-12-00843-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验