Suppr超能文献

具有知识约束的机器学习用于作为量子光源的微环谐振器的设计优化。

Machine learning with knowledge constraints for design optimization of microring resonators as a quantum light source.

作者信息

Sadeghli Dizaji Parisa, Habibiyan Hamidreza

机构信息

Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.

出版信息

Sci Rep. 2025 Jan 2;15(1):372. doi: 10.1038/s41598-024-84560-4.

Abstract

With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators. Our model, after only 5 optimization rounds, identified two optimal structures with distinct cross-sectional areas and radii (65 [Formula: see text] and 110 [Formula: see text]), achieving escape efficiencies over 90% and on-chip squeezing levels of 7.48 dB and 9.86 dB, respectively. Our results demonstrate that by adaptively finding the coupling coefficient through BO, the model has identified optimal points in the over-coupled regions with superior performance. This optimization model is developed specifically for single resonators made of silicon nitride. However, its applicability extends beyond this, and it can be used to model structures with auxiliary rings or other materials like silicon carbide. Our approach is expected to streamline the design of other integrated photonic components, including Mach-Zehnder interferometers and directional couplers, for applications in quantum photonic circuits and optical neural networks.

摘要

通过精心设计和集成,微环谐振器可以为开发用于量子信息处理的紧凑且可扩展的非经典光源提供一个有前景的基础。然而,当前的设计流程受到计算挑战以及具有相互依赖变量的复杂高维参数空间的阻碍。在这项工作中,我们提出了一种基于贝叶斯优化的知识集成机器学习框架,用于使用微环谐振器设计压缩光源。我们的模型在仅进行5轮优化后,识别出了两种具有不同横截面积和半径(65[公式:见正文]和110[公式:见正文])的最优结构,分别实现了超过90%的逃逸效率以及7.48 dB和9.86 dB的片上压缩水平。我们的结果表明,通过贝叶斯优化自适应地找到耦合系数,该模型在过耦合区域中识别出了具有卓越性能的最优点。这个优化模型是专门为氮化硅制成的单个谐振器开发的。然而,其适用性并不局限于此,它还可以用于对带有辅助环的结构或其他材料(如碳化硅)进行建模。我们的方法有望简化其他集成光子组件的设计,包括马赫曾德尔干涉仪和定向耦合器,以应用于量子光子电路和光学神经网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/723e/11697578/363a1ceda385/41598_2024_84560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验