Suppr超能文献

机器学习辅助构建慢性阻塞性肺疾病自我评估问卷(COPD-EQ):一项中国全国多中心研究

Machine learning-assisted construction of COPD self-evaluation questionnaire (COPD-EQ): a national multicentre study in China.

作者信息

Ma Yiming, Zhan Zijie, Chen Yahong, Zhang Jing, Li Wen, He Zhiyi, Xie Jungang, Zhao Haijin, Xu Anping, Peng Kun, Wang Gang, Zeng Qingping, Yang Ting, Chen Yan, Wang Chen

机构信息

Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China.

Research Unit of Respiratory Disease, Central South University, Changsha, China.

出版信息

J Glob Health. 2025 Jan 3;15:04052. doi: 10.7189/jogh.15.04052.

Abstract

BACKGROUND

Approximately 70% of chronic obstructive pulmonary disease (COPD) is underdiagnosed worldwide. We aimed to develop and validate a COPD self-evaluation questionnaire (COPD-EQ) that is better suited for COPD screening in China.

METHODS

We developed a primary version of COPD-EQ based on the Delphi method. Then, we conducted a nationwide multicentre prospective to validate our novel COPD-EQ screening ability. To improve the screening ability of COPD-EQ, we used a series of machine learning (ML)-based methods, including logistic regression, XgBoost, LightGBM, and CatBoost. These models were developed and then evaluated on a random 3:1 train/test split.

RESULTS

Through the Delphi approach, we developed the primary version of COPD-EQ with nine items. In the following prospective multicentre study, we recruited 1824 outpatients from 12 sites, of whom 404 (22.1%) were diagnosed with COPD. After the score assignment assisted by ML models and the Shapley Additive Explanation method, six of nine items were retained for a briefer version of COPD-EQ. The scoring-based method achieves an AUC score of 0.734 at a threshold of 4.0. Finally, a novel six-item COPD-EQ questionnaire was developed.

CONCLUSIONS

The COPD-EQ questionnaire was validated to be reliable and accurate in COPD screening for the Chinese population. The ML model can further improve the questionnaire's screening ability.

摘要

背景

在全球范围内,约70%的慢性阻塞性肺疾病(COPD)未得到诊断。我们旨在开发并验证一种更适合在中国进行COPD筛查的COPD自我评估问卷(COPD-EQ)。

方法

我们基于德尔菲法开发了COPD-EQ的初始版本。然后,我们在全国范围内开展了一项多中心前瞻性研究,以验证我们新型COPD-EQ的筛查能力。为了提高COPD-EQ的筛查能力,我们使用了一系列基于机器学习(ML)的方法,包括逻辑回归、XgBoost、LightGBM和CatBoost。这些模型经过开发后,在随机的3:1训练/测试分割数据集上进行评估。

结果

通过德尔菲法,我们开发了包含九个条目的COPD-EQ初始版本。在随后的前瞻性多中心研究中,我们从12个地点招募了1824名门诊患者,其中404名(22.1%)被诊断为COPD。在机器学习模型和夏普利加性解释方法的辅助下进行分数赋值后,九个条目中保留了六个,形成了一个更简短的COPD-EQ版本。基于评分的方法在阈值为4.0时的AUC得分为0.734。最终,开发出了一种新型的六项COPD-EQ问卷。

结论

COPD-EQ问卷在针对中国人群的COPD筛查中被验证具有可靠性和准确性。机器学习模型可以进一步提高该问卷的筛查能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d3/11699521/a7f150747c13/jogh-15-04052-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验