Suppr超能文献

BACT:用于单细胞空间转录组学数据的非参数贝叶斯细胞分型

BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data.

作者信息

Yan Yinqiao, Luo Xiangyu

机构信息

School of Mathematics, Statistics and Mechanics, Beijing University of Technology, No. 100 Pingleyuan, 100124 Beijing, China.

Institute of Statistics and Big Data, Renmin University of China, No. 59 Zhongguancun Street, 100872 Beijing, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae689.

Abstract

The spatial transcriptomics is a rapidly evolving biological technology that simultaneously measures the gene expression profiles and the spatial locations of spots. With progressive advances, current spatial transcriptomic techniques can achieve the cellular or even the subcellular resolution, making it possible to explore the fine-grained spatial pattern of cell types within one tissue section. However, most existing cell spatial clustering methods require a correct specification of the cell type number, which is hard to determine in the practical exploratory data analysis. To address this issue, we present a nonparametric Bayesian model BACT to perform BAyesian Cell Typing by utilizing gene expression information and spatial coordinates of cells. BACT incorporates a nonparametric Potts prior to induce neighboring cells' spatial dependency, and, more importantly, it can automatically learn the cell type number directly from the data without prespecification. Evaluations on three single-cell spatial transcriptomic datasets demonstrate the better performance of BACT than competing spatial cell typing methods. The R package and the user manual of BACT are publicly available at https://github.com/yinqiaoyan/BACT.

摘要

空间转录组学是一种快速发展的生物技术,它能同时测量基因表达谱和斑点的空间位置。随着技术的不断进步,当前的空间转录组学技术能够实现细胞甚至亚细胞分辨率,从而有可能探索一个组织切片内细胞类型的细粒度空间模式。然而,大多数现有的细胞空间聚类方法需要正确指定细胞类型数量,这在实际探索性数据分析中很难确定。为了解决这个问题,我们提出了一种非参数贝叶斯模型BACT,通过利用细胞的基因表达信息和空间坐标来进行贝叶斯细胞分型。BACT纳入了一个非参数Potts先验来诱导相邻细胞的空间依赖性,更重要的是,它可以直接从数据中自动学习细胞类型数量,而无需预先设定。对三个单细胞空间转录组数据集的评估表明,BACT比其他竞争的空间细胞分型方法具有更好的性能。BACT的R包和用户手册可在https://github.com/yinqiaoyan/BACT上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6dc/11697130/8d36a9f9807f/bbae689f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验