Liboni Luisa H B, Budzinski Roberto C, Busch Alexandra N, Löwe Sindy, Keller Thomas A, Welling Max, Muller Lyle E
Department of Mathematics, Western University, London, ON N6A 3K7, Canada.
Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2321319121. doi: 10.1073/pnas.2321319121. Epub 2025 Jan 3.
We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images. Using an exact solution of the recurrent network's dynamics, we present a precise description of the mechanism underlying object segmentation in the network dynamics, providing a clear mathematical interpretation of how the algorithm performs this task. Object segmentation across all images is accomplished with one recurrent neural network that has a single, fixed set of weights. This demonstrates the expressive potential of recurrent neural networks when constructed using a mathematical approach that brings together their structure, dynamics, and computation.
我们研究了在循环神经网络中利用时空动态进行图像分割的方法,其中每个单元的状态由一个复数表示。我们表明,该网络生成复杂的时空动态,能够根据场景的结构特征有效地将图像划分为不同的组。然后,我们展示了一种简单的对象分割算法,该算法可以推广到从灰度图像中的简单几何对象到自然图像的各种输入。通过循环网络动态的精确解,我们对网络动态中对象分割的潜在机制进行了精确描述,为该算法如何执行此任务提供了清晰的数学解释。所有图像的对象分割都由一个具有单一固定权重集的循环神经网络完成。这展示了使用将结构、动态和计算结合在一起的数学方法构建循环神经网络时的表达潜力。