Suppr超能文献

使用基于Transformer的模型和社交媒体帖子进行中暑检测。

Using transformer-based models and social media posts for heat stroke detection.

作者信息

Anno Sumiko, Kimura Yoshitsugu, Sugita Satoru

机构信息

Graduate School of Global Environmental Studies, Sophia University, Tokyo, Japan.

Yanagi Pearls, Shima, Mie, Japan.

出版信息

Sci Rep. 2025 Jan 4;15(1):742. doi: 10.1038/s41598-024-84992-y.

Abstract

Event-based surveillance is crucial for the early detection and rapid response to potential public health risks. In recent years, social networking services (SNS) have been recognized for their potential role in this domain. Previous studies have demonstrated the capacity of SNS posts for the early detection of health crises and affected individuals, including those related to infectious diseases. However, the reliability of such posts, being subjective and not clinically diagnosed, remains a challenge. In this study, we address this issue by assessing the classification performance of transformer-based pretrained language models to accurately classify Japanese tweets related to heat stroke, a significant health effect of climate change, as true or false. We also evaluated the efficacy of combining SNS and artificial intelligence for event-based public health surveillance by visualizing the data on correctly classified tweets and heat stroke emergency medical evacuees in time-space and animated video, respectively. The transformer-based pretrained language models exhibited good performance in classifying the tweets. Spatiotemporal and animated video visualizations revealed a reasonable correlation. This study demonstrates the potential of using Japanese tweets and deep learning algorithms based on transformer networks for event-based surveillance at high spatiotemporal levels to enable early detection of heat stroke risks.

摘要

基于事件的监测对于早期发现和快速应对潜在的公共卫生风险至关重要。近年来,社交网络服务(SNS)在这一领域的潜在作用已得到认可。先前的研究已经证明了SNS帖子在早期发现健康危机和受影响个体(包括与传染病相关的个体)方面的能力。然而,此类帖子的可靠性存在挑战,因为它们具有主观性且未经临床诊断。在本研究中,我们通过评估基于Transformer的预训练语言模型的分类性能来解决这个问题,以准确地将与中暑(气候变化的一个重大健康影响)相关的日语推文分类为真或假。我们还分别通过在时空和动画视频中可视化正确分类的推文和中暑紧急医疗疏散人员的数据,评估了将SNS和人工智能结合用于基于事件的公共卫生监测的效果。基于Transformer的预训练语言模型在推文分类方面表现出良好的性能。时空和动画视频可视化显示出合理的相关性。本研究证明了利用日语推文和基于Transformer网络的深度学习算法在高时空水平上进行基于事件的监测以早期发现中暑风险的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验