Suppr超能文献

使用机器学习算法预测孕早期的妊娠期糖尿病:伊朗一家医院生育健康中心的横断面研究

Predicting Gestational Diabetes Mellitus in the first trimester using machine learning algorithms: a cross-sectional study at a hospital fertility health center in Iran.

作者信息

Bigdeli Somayeh Kianian, Ghazisaedi Marjan, Ayyoubzadeh Seyed Mohammad, Hantoushzadeh Sedigheh, Ahmadi Marjan

机构信息

Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

BMC Med Inform Decis Mak. 2025 Jan 3;25(1):3. doi: 10.1186/s12911-024-02799-3.

Abstract

BACKGROUND

Gestational Diabetes Mellitus (GDM) is a common complication during pregnancy. Late diagnosis can have significant implications for both the mother and the fetus. This research aims to create an early prediction model for GDM in the first trimester of pregnancy. This model will help obstetricians and gynecologists make appropriate decisions for treating and preventing GDM complications.

METHODS

This applied descriptive study was conducted at the fertility health center of Vali-e-Asr Hospital in Tehran, Iran. The dataset was collected from the records of pregnant women registered in the hospital's system from 2020 to 2022. Risk factors for designing predictive models were identified through literature review, expert opinions, and clinical specialists' input. The extracted information underwent preprocessing, and six machine learning (ML) methods were developed and evaluated for GDM prediction in the first trimester of pregnancy: decision tree (DT), multilayer perceptron (MLP), k-nearest neighbors (KNN), Naïve Bayes (NB), random forest (RF), and extreme gradient boosting (XGBoost).

RESULTS

Models were evaluated using accuracy, precision, sensitivity, and the area under the receiver operating characteristic curve (AUC). Based on the glucose tolerance test (GTT) results, the RF model achieved the best performance in GDM prediction, with 89% accuracy, 86% precision, 92% recall, and 94% AUC, using demographic variables, medical history, and clinical findings. In modeling based on insulin consumption, the RF model achieved the best results with 62% accuracy, 60% precision, 63% recall, and 63% AUC in predicting GDM using demographic variables and medical history.

CONCLUSION

The results of this study demonstrate that ML algorithms, especially RF, have acceptable accuracy in the early prediction of GDM during the first trimester of pregnancy.

摘要

背景

妊娠期糖尿病(GDM)是孕期常见的并发症。诊断过晚对母亲和胎儿都会产生重大影响。本研究旨在创建孕早期GDM的早期预测模型。该模型将帮助妇产科医生做出治疗和预防GDM并发症的恰当决策。

方法

本应用描述性研究在伊朗德黑兰瓦利 - 阿斯尔医院的生殖健康中心开展。数据集收集自2020年至2022年在该医院系统登记的孕妇记录。通过文献综述、专家意见和临床专家的建议确定用于设计预测模型的风险因素。对提取的信息进行预处理,并开发和评估了六种机器学习(ML)方法用于孕早期GDM的预测:决策树(DT)、多层感知器(MLP)、k近邻(KNN)、朴素贝叶斯(NB)、随机森林(RF)和极端梯度提升(XGBoost)。

结果

使用准确率、精确率、灵敏度和受试者工作特征曲线下面积(AUC)对模型进行评估。基于葡萄糖耐量试验(GTT)结果,RF模型在GDM预测中表现最佳,使用人口统计学变量、病史和临床检查结果时,准确率达89%,精确率达86%,召回率达92%,AUC达94%。在基于胰岛素使用量的建模中,RF模型在使用人口统计学变量和病史预测GDM时取得了最佳结果,准确率为62%,精确率为60%,召回率为63%,AUC为63%。

结论

本研究结果表明,机器学习算法,尤其是随机森林,在孕早期GDM的早期预测中具有可接受的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e2/11699820/e4b59cc9efaf/12911_2024_2799_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验