Lindholz M, Ruppel R, Schulze-Weddige S, Baumgärtner G L, Schobert I, Panten A, Schmidt R, Auer T A, Nawabi J, Haack A-M, Stepansky L, Poggi L, Hosch R, Hamm C A, Penzkofer T
Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
Radiography (Lond). 2025 Jan;31(1):372-378. doi: 10.1016/j.radi.2024.12.018. Epub 2025 Jan 3.
Facial recognition technology in medical imaging, particularly with head scans, poses privacy risks due to identifiable facial features. This study evaluates the use of facial recognition software in identifying facial features from head CT scans and explores a defacing pipeline using TotalSegmentator to reduce re-identification risks while preserving data integrity for research.
1404 high-quality renderings from the UCLH EIT Stroke dataset, both with and without defacing were analysed. The performance of defacing with the face mask created by TotalSegmentator was compared to a state-of-the-art CT defacing algorithm. Face detection was performed using deep learning models. The cosine similarity between facial embeddings for intra- and inter-patient images was compared. A Support Vector Machine was trained on cosine similarity values to assess defacing performance, determining if two renderings came from the same patient. This analysis was conducted on defaced and non-defaced images using 5-fold cross-validation.
Faces were detected in 76.5 % of non-defaced images. Intra-patient images exhibited a median cosine similarity of 0.65 (IQR: 0.47-0.80), compared to 0.50 (IQR: 0.39-0.62) for inter-patient images. A binary classifier performed moderately on non-defaced images, achieving a ROC-AUC of 0.69 (SD = 0.01) and an accuracy of 0.65 (SD = 0.01) in distinguishing whether a scan belonged to the same or a different individual. Following defacing, performance declined markedly. Defacing with the TotalSegmentator decreased the ROC-AUC to 0.55 (SD = 0.02) and the accuracy to 0.56 (SD = 0.01), whereas the CTA-DEFACE algorithm brought the performance down to a ROC-AUC of 0.60 (SD = 0.02) and an accuracy of 0.59 (SD = 0.01). These results demonstrate the effectiveness of defacing algorithms in mitigating re-identification risks, with the TotalSegmentator providing slightly superior privacy protection.
Facial recognition software can identify facial features from partial and complete head CT scan renderings. However, using the TotalSegmentator to deface images reduces re-identification risks to a near-chance level. We offer code to implement this privacy-preserving pipeline.
Utilizing the TotalSegmentator framework, the proposed pipeline efficiently removes facial features from CT images, making it ideal for multi-site research and data sharing. It is a useful tool for radiographers and radiologists who must comply with medico-legal requirements necessitating the removal of facial features.
医学成像中的面部识别技术,尤其是头部扫描,由于面部特征可识别而带来隐私风险。本研究评估了面部识别软件在从头部CT扫描中识别面部特征的应用,并探索了一种使用TotalSegmentator的去面部化流程,以降低重新识别风险,同时为研究保留数据完整性。
分析了来自UCLH EIT中风数据集的1404张高质量渲染图,包括有和没有去面部化处理的。将使用TotalSegmentator创建的面罩进行去面部化处理的性能与一种先进的CT去面部化算法进行比较。使用深度学习模型进行面部检测。比较了患者内和患者间图像的面部嵌入之间的余弦相似度。在余弦相似度值上训练支持向量机以评估去面部化性能,确定两张渲染图是否来自同一患者。使用5折交叉验证对去面部化和未去面部化的图像进行此分析。
在76.5%的未去面部化图像中检测到面部。患者内图像的余弦相似度中位数为0.65(四分位距:0.47 - 0.80),而患者间图像为0.50(四分位距:0.39 - 0.62)。二元分类器在未去面部化图像上表现中等,在区分扫描是否属于同一或不同个体时,ROC-AUC为0.69(标准差 = 0.01),准确率为0.65(标准差 = 0.01)。去面部化后,性能显著下降。使用TotalSegmentator进行去面部化处理使ROC-AUC降至0.55(标准差 = 0.02),准确率降至0.56(标准差 = 0.01),而CTA-DEFACE算法使性能降至ROC-AUC为0.60(标准差 = 0.02),准确率为0.59(标准差 = 0.01)。这些结果证明了去面部化算法在减轻重新识别风险方面的有效性,TotalSegmentator提供了略优的隐私保护。
面部识别软件可以从部分和完整的头部CT扫描渲染图中识别面部特征。然而,使用TotalSegmentator对面部进行去面部化处理可将重新识别风险降低到接近随机水平。我们提供了实现此隐私保护流程的代码。
利用TotalSegmentator框架,所提出的流程可有效地从CT图像中去除面部特征,使其非常适合多中心研究和数据共享。对于必须遵守去除面部特征的医学法律要求的放射技师和放射科医生来说,这是一个有用的工具。