Suppr超能文献

用于预测肺腺癌预后和免疫治疗反应的端粒与衰老相关特征的综合分析

Comprehensive analysis of telomere and aging-related signature for predicting prognosis and immunotherapy response in lung adenocarcinoma.

作者信息

Ye Zhe, Huang Yiwei, Chen Tingting, Wu Youyi

机构信息

Department of Oncology Radiotherapy, Ruian People's Hospital, Wenzhou Medical University, Affiliated Hospital 3, Wenzhou, Zhejiang, 35200, China.

Department of Oncology Radiotherapy, Ruian People's Hospital, Wenzhou Medical University, Affiliated Hospital 3, 108 Ruifeng Avenue, Wenzhou, Zhejiang, 35200, China.

出版信息

J Cardiothorac Surg. 2025 Jan 6;20(1):31. doi: 10.1186/s13019-024-03337-y.

Abstract

BACKGROUND

Lung adenocarcinoma (LUAD) is a high-risk malignancy. Telomeres- (TRGs) and aging-related genes (ARGs) play an important role in cancer progression and prognosis. This study aimed to develop a novel prognostic model combined TRGs and ARGs signatures to predict the prognosis of patients with LUAD.

METHODS

LUAD patient's sample data and clinical data were obtained from public databases. The prognostic model was constructed and evaluated using the least absolute shrinkage and selection operator (LASSO), multivariate Cox analysis, time-dependent receiver operating characteristic (ROC), and Kaplan-Meier (K-M) analysis. Immune cell infiltration levels were assessed using single-sample gene set enrichment analysis (ssGSEA). Antitumor drugs with significant correlations between drug sensitivity and the expression of prognostic genes were identified using the CellMiner database. The distribution and expression levels of prognostic genes in immune cells were subsequently analyzed based on the TISCH database.

RESULTS

This study identified eight characteristic genes that are significantly associated with LUAD prognosis and could serve as independent prognostic factors, with the low-risk group demonstrating a more favorable outcome. Additionally, a comprehensive nomogram was developed, showing a high degree of prognostic predictive value. The results from ssGSEA indicated that the low-risk group had higher immune cell infiltration. Ultimately, our findings revealed that the high-risk group exhibited heightened sensitivity to the Linsitinib, whereas the low-risk group demonstrated enhanced sensitivity to the OSI-027 drug.

CONCLUSION

The risk score exhibited robust prognostic capabilities, offering novel insights for assessing immunotherapy. This will provide a new direction to achieve personalized and precise treatment of LUAD in the future.

摘要

背景

肺腺癌(LUAD)是一种高危恶性肿瘤。端粒相关基因(TRGs)和衰老相关基因(ARGs)在癌症进展和预后中起重要作用。本研究旨在开发一种结合TRGs和ARGs特征的新型预后模型,以预测LUAD患者的预后。

方法

从公共数据库中获取LUAD患者的样本数据和临床数据。使用最小绝对收缩和选择算子(LASSO)、多变量Cox分析、时间依赖受试者工作特征(ROC)和Kaplan-Meier(K-M)分析构建并评估预后模型。使用单样本基因集富集分析(ssGSEA)评估免疫细胞浸润水平。使用CellMiner数据库鉴定药物敏感性与预后基因表达之间具有显著相关性的抗肿瘤药物。随后基于TISCH数据库分析免疫细胞中预后基因的分布和表达水平。

结果

本研究确定了八个与LUAD预后显著相关的特征基因,可作为独立的预后因素,低风险组显示出更有利的结果。此外,还开发了一个综合列线图,显示出高度的预后预测价值。ssGSEA结果表明,低风险组具有更高的免疫细胞浸润。最终,我们的研究结果表明,高风险组对林西替尼表现出更高的敏感性,而低风险组对OSI-027药物表现出更高的敏感性。

结论

风险评分具有强大的预后能力,为评估免疫治疗提供了新的见解。这将为未来实现LUAD的个性化精准治疗提供新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdc0/11702222/2bff7315cb1f/13019_2024_3337_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验