Suppr超能文献

基于深度学习的慢性肾脏病肾小管间质损伤的组织病理学评估

Deep learning-based histopathological assessment of tubulo-interstitial injury in chronic kidney diseases.

作者信息

Suzuki Nonoka, Kojima Kaname, Malvica Silvia, Yamasaki Kenshi, Chikamatsu Yoichiro, Oe Yuji, Nagasawa Tasuku, Kondo Ekyu, Sanada Satoru, Aiba Setsuya, Sato Hiroshi, Miyazaki Mariko, Ito Sadayoshi, Sato Mitsuhiro, Tanaka Tetsuhiro, Kinoshita Kengo, Asano Yoshihide, Rosenberg Avi Z, Okamoto Koji, Shido Kosuke

机构信息

Division of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.

Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.

出版信息

Commun Med (Lond). 2025 Jan 5;5(1):3. doi: 10.1038/s43856-024-00708-3.

Abstract

BACKGROUND

Chronic kidney disease (CKD) causes progressive and irreversible damage to the kidneys. Renal biopsies are essential for diagnosing the etiology and prognosis of CKD, while accurate quantification of tubulo-interstitial injuries from whole slide images (WSIs) of renal biopsy specimens is challenging with visual inspection alone.

METHODS

We develop a deep learning-based method named DLRS to quantify interstitial fibrosis and inflammatory cell infiltration as tubulo-interstitial injury scores, from WSIs of renal biopsy specimens. DLRS segments WSIs into non-tissue areas, glomeruli, tubules, interstitium, and arteries, and detects interstitial nuclei. It then quantifies these tubulo-interstitial injury scores using the segmented tissues and detected nuclei.

RESULTS

Applied to WSIs from 71 Japanese CKD patients with diabetic nephropathy or benign nephrosclerosis, DLRS-derived scores show concordance with nephrologists' evaluations. Notably, the DLRS-derived fibrosis score has a higher correlation with the estimated glomerular filtration rate (eGFR) at biopsy than scores from nephrologists' evaluations. Validated on WSIs from 28 Japanese tubulointerstitial nephritis patients and 49 European-ancestry patients with nephrosclerosis, DLRS-derived scores show a significant correlation with eGFR. In an expanded analysis of 238 Japanese CKD patients, including 167 from another hospital, deviations in eGFR from expected values based on DLRS-derived scores correlate with annual eGFR decline after biopsy. Inclusion of these deviations and DLRS-derived fibrosis scores improve predictions of the annual eGFR decline.

CONCLUSIONS

DLRS-derived tubulo-interstitial injury scores are concordant with nephrologists' evaluations and correlated with eGFR across different populations and institutions. The effectiveness of DLRS-derived scores for predicting annual eGFR decline highlights the potential of DLRS as a predictor of renal prognosis.

摘要

背景

慢性肾脏病(CKD)会对肾脏造成进行性且不可逆的损害。肾活检对于诊断CKD的病因和预后至关重要,然而仅通过目视检查来准确量化肾活检标本全切片图像(WSIs)中的肾小管间质损伤具有挑战性。

方法

我们开发了一种基于深度学习的方法,名为DLRS,用于从肾活检标本的WSIs中量化间质纤维化和炎性细胞浸润,作为肾小管间质损伤评分。DLRS将WSIs分割为非组织区域、肾小球、肾小管、间质和动脉,并检测间质细胞核。然后,它使用分割后的组织和检测到的细胞核来量化这些肾小管间质损伤评分。

结果

将DLRS应用于71例患有糖尿病肾病或良性肾硬化的日本CKD患者的WSIs,DLRS得出的评分与肾病学家的评估结果一致。值得注意的是,与肾病学家的评估评分相比,DLRS得出的纤维化评分与活检时的估计肾小球滤过率(eGFR)具有更高的相关性。在28例日本肾小管间质性肾炎患者和49例具有欧洲血统的肾硬化患者的WSIs上进行验证,DLRS得出的评分与eGFR显著相关。在对238例日本CKD患者(包括来自另一家医院的167例)的扩展分析中,基于DLRS得出的评分,eGFR与预期值的偏差与活检后的年度eGFR下降相关。纳入这些偏差和DLRS得出的纤维化评分可改善对年度eGFR下降的预测。

结论

DLRS得出的肾小管间质损伤评分与肾病学家的评估结果一致,并且在不同人群和机构中与eGFR相关。DLRS得出的评分在预测年度eGFR下降方面的有效性凸显了DLRS作为肾脏预后预测指标的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315f/11701080/216bf9834cf5/43856_2024_708_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验