Prakash U M, Iniyan S, Dutta Ashit Kumar, Alsubai Shtwai, Naga Ramesh Janjhyam Venkata, Mohanty Sachi Nandan, Dudekula Khasim Vali
School of Computing, SRM Institute of Science and Technology, Kaatankulathur, Chennai, 603203, India.
Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, 13713, Ad Diriyah, Riyadh, Kingdom of Saudi Arabia.
Sci Rep. 2025 Jan 7;15(1):1105. doi: 10.1038/s41598-024-84949-1.
In the present scenario, cancerous tumours are common in humans due to major changes in nearby environments. Skin cancer is a considerable disease detected among people. This cancer is the uncontrolled evolution of atypical skin cells. It occurs when DNA injury to skin cells, or a genetic defect, leads to an increase quickly and establishes malignant tumors. However, in rare instances, many types of skin cancer occur from DNA changes tempted by infrared light affecting skin cells. This disease is a worldwide health problem, so an accurate and appropriate diagnosis is needed for efficient treatment. Current developments in medical technology, like smart recognition and analysis utilizing machine learning (ML) and deep learning (DL) techniques, have transformed the analysis and treatment of these conditions. These approaches will be highly effective for the recognition of skin cancer utilizing biomedical imaging. This study develops a Multi-scale Feature Fusion of Deep Convolutional Neural Networks on Cancerous Tumor Detection and Classification (MFFDCNN-CTDC) model. The main aim of the MFFDCNN-CTDC model is to detect and classify cancerous tumours using biomedical imaging. To eliminate unwanted noise, the MFFDCNN-CTDC method initially utilizes a sobel filter (SF) for the image preprocessing stage. For the segmentation process, Unet3+ is employed, providing precise localization of tumour regions. Next, the MFFDCNN-CTDC model incorporates multi-scale feature fusion by combining ResNet50 and EfficientNet architectures, capitalizing on their complementary strengths in feature extraction from varying depths and scales of the input images. The convolutional autoencoder (CAE) model is utilized for the classification method. Finally, the parameter tuning process is performed through a hybrid fireworks whale optimization algorithm (FWWOA) to enhance the classification performance of the CAE model. A wide range of experiments is performed to authorize the performance of the MFFDCNN-CTDC approach. The experimental validation of the MFFDCNN-CTDC approach exhibited a superior accuracy value of 98.78% and 99.02% over existing techniques under ISIC 2017 and HAM10000 datasets.
在当前情况下,由于附近环境的重大变化,癌性肿瘤在人类中很常见。皮肤癌是在人群中检测到的一种相当严重的疾病。这种癌症是非典型皮肤细胞的不受控制的演变。当皮肤细胞的DNA损伤或基因缺陷导致细胞迅速增殖并形成恶性肿瘤时,就会发生皮肤癌。然而,在极少数情况下,多种类型的皮肤癌是由影响皮肤细胞的红外光引发的DNA变化引起的。这种疾病是一个全球性的健康问题,因此需要准确适当的诊断以进行有效治疗。医学技术的当前发展,如利用机器学习(ML)和深度学习(DL)技术进行智能识别和分析,已经改变了对这些病症的分析和治疗。这些方法对于利用生物医学成像识别皮肤癌将非常有效。本研究开发了一种用于癌性肿瘤检测和分类的深度卷积神经网络多尺度特征融合(MFFDCNN-CTDC)模型。MFFDCNN-CTDC模型的主要目标是利用生物医学成像检测和分类癌性肿瘤。为了消除不需要的噪声,MFFDCNN-CTDC方法在图像预处理阶段最初使用索贝尔滤波器(SF)。对于分割过程,采用Unet3+,以提供肿瘤区域的精确定位。接下来,MFFDCNN-CTDC模型通过结合ResNet50和EfficientNet架构进行多尺度特征融合,利用它们在从输入图像的不同深度和尺度提取特征方面的互补优势。卷积自动编码器(CAE)模型用于分类方法。最后,通过混合烟花鲸鱼优化算法(FWWOA)进行参数调整过程,以提高CAE模型的分类性能。进行了广泛的实验以验证MFFDCNN-CTDC方法的性能。在ISIC 2017和HAM10000数据集下,MFFDCNN-CTDC方法的实验验证显示出比现有技术更高的准确率,分别为98.78%和99.02%。