Suppr超能文献

基于传统诊断方法构建具有临床意义的前列腺癌风险预测模型。

Construction of a clinically significant prostate cancer risk prediction model based on traditional diagnostic methods.

作者信息

Ji Wen-Tong, Wang Yong-Kun, Han Zhan-Yang, Wang Si-Qi, Wang Yao

机构信息

Urology 2nd Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.

Orthopedics Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.

出版信息

Front Oncol. 2024 Dec 20;14:1474891. doi: 10.3389/fonc.2024.1474891. eCollection 2024.

Abstract

OBJECTIVES

to construct a prediction model for clinically significant prostate cancer (csPCa) based on prostate-specific antigen (PSA) levels, digital rectal examination (DRE), and transrectal ultrasonography (TRUS).

METHODS

We retrospectively analysed 1196 Asian patients who underwent transrectal ultrasound-guided biopsy (TRUSB) between June 2000 and February 2023. Patients were randomly divided into a training set of 837 cases (70%) and a validation set of 359 patients (30%). A csPCa risk prediction model was established using the logistic regression. The performance of the model was examined based on calibration curves, receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and clinical impact curves (CIC).

RESULTS

Serum PSA levels, age, DRE results, prostatic shape, prostatic border and hypoechoic area were associated with pathological outcomes. The area under the ROC curve of the training set was 0.890 (95%CI: 0.865-0.816). The optimal cut-off value was 0.279. The calibration curves indicated good calibration, and the DCA and CIC results demonstrated good clinical utility. Significantly, the prediction model has higher negative predictive value (89.8%) and positive predictive value (68.0%) compared with MRI. Subsequently, we developed an online calculator (https://jiwentong0.shinyapps.io/dynnomapp/) with six variables for biopsy optimization.

CONCLUSION

This study incorporated the results of three traditional diagnostic methods to establish a cost-effective and highly accurate model for predicting csPCa before biopsy. With this model, we aim to provide a non-invasive and cost-effective tool for csPCa detection in Asia and other underdeveloped areas.

摘要

目的

基于前列腺特异性抗原(PSA)水平、直肠指检(DRE)和经直肠超声检查(TRUS)构建具有临床意义的前列腺癌(csPCa)预测模型。

方法

我们回顾性分析了2000年6月至2023年2月期间接受经直肠超声引导下活检(TRUSB)的1196例亚洲患者。患者被随机分为训练集837例(70%)和验证集359例(30%)。使用逻辑回归建立csPCa风险预测模型。基于校准曲线、受试者工作特征(ROC)曲线、决策曲线分析(DCA)和临床影响曲线(CIC)对模型性能进行检验。

结果

血清PSA水平、年龄、DRE结果、前列腺形状、前列腺边界和低回声区与病理结果相关。训练集的ROC曲线下面积为0.890(95%CI:0.865 - 0.816)。最佳截断值为0.279。校准曲线显示校准良好,DCA和CIC结果表明具有良好的临床实用性。值得注意的是,与MRI相比,该预测模型具有更高的阴性预测值(89.8%)和阳性预测值(68.0%)。随后,我们开发了一个包含六个变量的在线计算器(https://jiwentong0.shinyapps.io/dynnomapp/)用于活检优化。

结论

本研究纳入了三种传统诊断方法的结果,建立了一种在活检前预测csPCa的经济高效且高度准确的模型。借助该模型,我们旨在为亚洲及其他欠发达地区的csPCa检测提供一种非侵入性且经济高效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7945/11695187/e0af62cc047a/fonc-14-1474891-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验