Suppr超能文献

对ChatGPT作为数据分析工具的性能考察。

Examination of ChatGPT's Performance as a Data Analysis Tool.

作者信息

Koçak Duygu

机构信息

Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey.

出版信息

Educ Psychol Meas. 2025 Jan 3:00131644241302721. doi: 10.1177/00131644241302721.

Abstract

This study examines the performance of ChatGPT, developed by OpenAI and widely used as an AI-based conversational tool, as a data analysis tool through exploratory factor analysis (EFA). To this end, simulated data were generated under various data conditions, including normal distribution, response category, sample size, test length, factor loading, and measurement models. The generated data were analyzed using ChatGPT-4o twice with a 1-week interval under the same prompt, and the results were compared with those obtained using R code. In data analysis, the Kaiser-Meyer-Olkin (KMO) value, total variance explained, and the number of factors estimated using the empirical Kaiser criterion, Hull method, and Kaiser-Guttman criterion, as well as factor loadings, were calculated. The findings obtained from ChatGPT at two different times were found to be consistent with those obtained using R. Overall, ChatGPT demonstrated good performance for steps that require only computational decisions without involving researcher judgment or theoretical evaluation (such as KMO, total variance explained, and factor loadings). However, for multidimensional structures, although the estimated number of factors was consistent across analyses, biases were observed, suggesting that researchers should exercise caution in such decisions.

摘要

本研究通过探索性因子分析(EFA)检验了由OpenAI开发并被广泛用作基于人工智能的对话工具的ChatGPT作为数据分析工具的性能。为此,在各种数据条件下生成了模拟数据,包括正态分布、响应类别、样本量、测验长度、因子载荷和测量模型。在相同提示下,使用ChatGPT-4o对生成的数据进行了两次分析,间隔为1周,并将结果与使用R代码获得的结果进行比较。在数据分析中,计算了Kaiser-Meyer-Olkin(KMO)值、解释的总方差、使用经验Kaiser准则、赫尔方法和Kaiser-Guttman准则估计的因子数量以及因子载荷。发现ChatGPT在两个不同时间获得的结果与使用R获得的结果一致。总体而言,ChatGPT在仅需要计算决策而不涉及研究者判断或理论评估的步骤(如KMO、解释的总方差和因子载荷)中表现良好。然而,对于多维结构,尽管各分析中估计的因子数量一致,但仍观察到偏差,这表明研究者在做出此类决策时应谨慎。

相似文献

1
Examination of ChatGPT's Performance as a Data Analysis Tool.对ChatGPT作为数据分析工具的性能考察。
Educ Psychol Meas. 2025 Jan 3:00131644241302721. doi: 10.1177/00131644241302721.

本文引用的文献

1
Factor Retention Using Machine Learning With Ordinal Data.使用机器学习处理有序数据的因子保留
Appl Psychol Meas. 2022 Jul;46(5):406-421. doi: 10.1177/01466216221089345. Epub 2022 May 4.
6
An empirical Kaiser criterion.经验 Kaiser 准则。
Psychol Methods. 2017 Sep;22(3):450-466. doi: 10.1037/met0000074. Epub 2016 Mar 31.
9
The use of Likert scales with children.在儿童中使用李克特量表。
J Pediatr Psychol. 2014 Apr;39(3):369-79. doi: 10.1093/jpepsy/jst079. Epub 2013 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验