Chen Yuheng, Xu Xin, Wan Xiaomeng, Xiao Jiashun, Yang Can
Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
Shenzhen Research Institute of Big Data, ShenZhen, 518100, China.
Small Methods. 2025 May;9(5):e2400975. doi: 10.1002/smtd.202400975. Epub 2025 Jan 7.
Subcellular Spatial Transcriptomics (SST) represents an innovative technology enabling researchers to investigate gene expression at the subcellular level within tissues. To comprehend the spatial architecture of a given tissue, cell segmentation plays a crucial role in attributing the measured transcripts to individual cells. However, existing cell segmentation methods for SST datasets still face challenges in accurately distinguishing cell boundaries due to the varying characteristics of SST technologies. In this study, a unified approach is proposed to cell segmentation (UCS) specifically designed for SST data obtained from diverse platforms, including 10X Xenium, NanoString CosMx, MERSCOPE, and Stereo-seq. UCS leverages deep learning techniques to achieve high accuracy in cell segmentation by integrating nuclei segmentation from nuclei staining and transcript data. Compared to current methods, UCS not only provides more precise transcript assignment to individual cells but also offers computational advantages for large-scale SST data analysis. The analysis output of UCS further supports versatile downstream analyses, such as subcellular gene classification and missing cell detection. By employing UCS, researchers gain the ability to characterize gene expression patterns at both the cellular and subcellular levels, leading to a deeper understanding of tissue architecture and function.
亚细胞空间转录组学(SST)是一项创新技术,使研究人员能够在组织内的亚细胞水平上研究基因表达。为了理解给定组织的空间结构,细胞分割在将测得的转录本归属于单个细胞方面起着至关重要的作用。然而,由于SST技术的不同特点,现有的SST数据集细胞分割方法在准确区分细胞边界方面仍面临挑战。在本研究中,提出了一种专门为从不同平台(包括10X Xenium、NanoString CosMx、MERSCOPE和Stereo-seq)获得的SST数据设计的统一细胞分割方法(UCS)。UCS利用深度学习技术,通过整合来自细胞核染色和转录本数据的细胞核分割,在细胞分割中实现高精度。与当前方法相比,UCS不仅为单个细胞提供了更精确的转录本分配,还为大规模SST数据分析提供了计算优势。UCS的分析输出进一步支持多种下游分析,如亚细胞基因分类和缺失细胞检测。通过采用UCS,研究人员能够在细胞和亚细胞水平上表征基因表达模式,从而更深入地了解组织结构和功能。