Suppr超能文献

深度学习在将空间转录组学与其他模态整合中的应用

Deep learning in integrating spatial transcriptomics with other modalities.

作者信息

Luo Jiajian, Fu Jiye, Lu Zuhong, Tu Jing

机构信息

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae719.

Abstract

Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells. Integrating such additional data from other modalities can effectively enhance spatial transcriptomics data, and, conversely, spatial transcriptomics data can supplement scRNA-seq with spatial information. Moreover, the rapid development of spatial multi-omics technology has spurred the demand for the integration of spatial multi-omics data to present a more detailed molecular landscape within tissues. Numerous deep learning (DL) methods have been developed for integrating spatial transcriptomics with other modalities. However, a comprehensive review of DL approaches for integrating spatial transcriptomics data with other modalities remains absent. In this study, we systematically review the applications of DL in integrating spatial transcriptomics data with other modalities. We first delineate the DL techniques applied in this integration and the key tasks involved. Next, we detail these methods and categorize them based on integrated modality and key task. Furthermore, we summarize the integration strategies of these integration methods. Finally, we discuss the challenges and future directions in integrating spatial transcriptomics with other modalities, aiming to facilitate the development of robust computational methods that more comprehensively exploit multimodal information.

摘要

空间转录组学技术已广泛应用于生物学研究,能够在保留组织空间背景的同时对转录组进行研究。与空间转录组学数据相结合的平台通常会提供组织学和(或)染色质图像,这些图像能够捕捉细胞形态和染色质组织。此外,来自匹配组织的单细胞RNA测序(scRNA-seq)数据通常会伴随空间数据,提供单个细胞的全转录组基因表达谱。整合来自其他模态的此类额外数据可以有效增强空间转录组学数据,反之,空间转录组学数据可以用空间信息补充scRNA-seq。此外,空间多组学技术的快速发展激发了整合空间多组学数据的需求,以呈现组织内更详细的分子图景。已经开发了许多深度学习(DL)方法用于将空间转录组学与其他模态进行整合。然而,目前仍缺乏对用于整合空间转录组学数据与其他模态的DL方法的全面综述。在本研究中,我们系统地综述了DL在整合空间转录组学数据与其他模态方面的应用。我们首先描述了在这种整合中应用的DL技术以及所涉及的关键任务。接下来,我们详细介绍这些方法,并根据整合模态和关键任务对它们进行分类。此外,我们总结了这些整合方法的整合策略。最后,我们讨论了在整合空间转录组学与其他模态方面的挑战和未来方向,旨在促进更全面利用多模态信息的强大计算方法的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c144/11725393/1619b12a66b6/bbae719f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验