Suppr超能文献

针对多种具有广泛靶向范围的高效碱基编辑器的综合基准测试。

A comprehensive benchmark for multiple highly efficient base editors with broad targeting scope.

作者信息

Wang Xiaofeng, Cheng Xiaolong, Li Zexu, Ma Shixin, Zhang Han, Chen Zhisong, Yao Yingjia, Li Zihan, Zhong Chunge, Li You, Zhang Yunhan, Menon Vipin, Chao Lumen, Li Wei, Fei Teng

机构信息

Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.

National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China.

出版信息

bioRxiv. 2024 Dec 20:2024.12.17.628899. doi: 10.1101/2024.12.17.628899.

Abstract

As the toolbox of base editors (BEs) expands, selecting appropriate BE and guide RNA (gRNA) to achieve optimal editing efficiency and outcome for a given target becomes challenging. Here, we construct a set of 10 adenine and cytosine BEs with high activity and broad targeting scope, and comprehensively evaluate their editing profiles and properties head-to-head with 34,040 BE-gRNA-target combinations using genomically integrated long targets and tiling gRNA strategies. Interestingly, we observe widespread non-canonical protospacer adjacent motifs (PAMs) for these BEs. Using this large-scale benchmark data, we build a deep learning model, named BEEP (Base Editing Efficiency Predictor), for predicting the editing efficiency and outcome of these BEs. Guided by BEEP, we experimentally test and validate the installment of 3,558 disease-associated single nucleotide variants (SNVs) via BEs, including 20.1% of target sites that would be generally considered as "uneditable", due to the lack of canonical PAMs. We further predict candidate BE-gRNA-target combinations for modeling 1,752,651 ClinVar SNVs. We also identify several cancer-associated SNVs that drive the resistance to BRAF inhibitors in melanoma. These efforts benchmark the performance and illuminate the capabilities of multiple highly useful BEs for interrogating functional SNVs. A practical webserver (http://beep.weililab.org/) is freely accessible to guide the selection of optimal BEs and gRNAs for a given target.

摘要

随着碱基编辑器(BEs)的工具库不断扩展,为给定靶点选择合适的BE和引导RNA(gRNA)以实现最佳编辑效率和结果变得具有挑战性。在此,我们构建了一组10个具有高活性和广泛靶向范围的腺嘌呤和胞嘧啶BEs,并使用基因组整合的长靶点和平铺gRNA策略,与34,040种BE-gRNA-靶点组合进行了全面的编辑图谱和特性的直接比较评估。有趣的是,我们观察到这些BEs存在广泛的非规范原间隔相邻基序(PAMs)。利用这些大规模的基准数据,我们构建了一个名为BEEP(碱基编辑效率预测器)的深度学习模型,用于预测这些BEs的编辑效率和结果。在BEEP的指导下,我们通过BEs对3558个疾病相关的单核苷酸变异(SNVs)进行了实验测试和验证,其中包括20.1%的由于缺乏规范PAMs而通常被认为“不可编辑”的靶点。我们进一步预测了用于模拟1752651个ClinVar SNVs的候选BE-gRNA-靶点组合。我们还鉴定出了几种在黑色素瘤中导致对BRAF抑制剂耐药的癌症相关SNVs。这些工作对多种高度有用的BEs用于研究功能性SNVs的性能进行了基准测试,并阐明了其能力。一个实用的网络服务器(http://beep.weililab.org/)可免费访问,以指导为给定靶点选择最佳的BEs和gRNAs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/642e/11702641/4c842540617a/nihpp-2024.12.17.628899v1-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验